LA RISOLUZIONE DELLE EMERGENZE IDROPOTABILI MEDIANTE SERBATOI SOTTERRANEI DI INTEGRAZIONE DEI BACINI ARTIFICIALI

serbatoi integrativi

 

1. PREMESSA

Nelle regioni, soprattutto del meridione d’Italia, afflitte da sistematiche crisi nel rifornimento idrico, si usa ricorrere all’utilizzazione dell’acqua accumulata, durante antecedenti periodi di intensa piovosità, in bacini artificiali creati mediante dighe di ritenuta. Sono ben noti gli inconvenienti che tali opere presentano per quanto riguarda l’impatto ambientale e per il pericolo di franamento delle sponde dei laghi. Se si aggiungono il problema delle rilevanti perdite d’acqua dagli invasi per l’evaporazione causata da irraggiamento solare e quello dell’interramento cui gli stessi sono inevitabilmente soggetti e che finirà per comprometterne in futuro la funzionalità, si ottiene un quadro niente affatto incoraggiante della situazione. In realtà regioni come la Sicilia o la Sardegna dove ingenti sono stati i capitali profusi per la costruzione di opere come quelle indicate, il problema del rifornimento idropotabile della popolazione è lungi dall’essere risolto né si può prevedere lo sia in un futuro più o meno lontano quando l’aumento dei consumi specifici richiederà volumi d’acqua ancora maggiori. Viste le premesse non si ritiene logico continuare nell’azione intrapresa e cioè riempire il territorio di dighe e laghi artificiali come quelli descritti. Occorre invece ricercare soluzioni diverse, che si integrino perfettamente con quelle citate aumentando la disponibilità d’acqua senza provocare danni all’ambiente. Saranno gli studi in corso per la ricarica artificiale di falda, quelli per la creazione, mediante diaframmi di impermeabilizzazione, di capaci bacini sotterranei ed altre ricerche del genere, tutte tese a trasferire nel sottosuolo gran parte dei servizi dannosi in superficie, che produrranno in futuro risultati molto interessanti. Nel frattempo una delle soluzioni dalla quale si possono ottenere immediati grandi benefici si ritiene possa essere la costruzione di grandi serbatoi costituiti da gallerie in roccia secondo le indicazioni sommariamente riportate nel presente lavoro.

2. CARATTERISTICHE GENERALI DELLE OPERE PROPOSTE

Un serbatoio galleria costruito mezzo secolo fa e perfettamente funzionante

Lo scopo da raggiungere con le opere in progetto consiste soprattutto nella raccolta, nel territorio interessato, del maggior quantitativo d’acqua possibile ed inoltre nel garantirne la conservazione per un lungo periodo senza che le sue caratteristiche chimico-fisiche ed organolettiche abbiano a subire alterazioni di rilievo. Il manufatto che meglio vi si presta è senza dubbio il serbatoio galleria scavato nella roccia e rivestito internamente in calcestruzzo che si vuole qui esaminare in dettaglio. Si tratta in pratica a di adibire un’opera come il tunnel, che normalmente è usato per scopi completamente diversi come sono ad esempio quelli legati alla viabilità oppure all’adduzione dell’acqua degli impianti idroelettrici, ad un uso insolito come è quello di fungere da grande contenitore d’acqua potabile. Il serbatoio che così si ricava, avendo una modesta sezione trasversale ma un notevolissimo sviluppo longitudinale, ha la caratteristica saliente di poter percorrere, grazie appunto alla sua notevolissima lunghezza, ampi territori e quindi di andare, previo un attento studio del suo tracciato, a raccogliere l’acqua lì dove essa è reperibile. La galleria ha infatti un solo vincolo dato dalla necessità di mantenere per tutto il suo sviluppo una quota costante nel mentre il suo tracciato è completamente libero di svolgersi in una direzione qualsiasi e quindi può essere rettilineo, curvo, a maglia chiusa od aperta, a percorso singolo o ramificato: in altri termini può svolgersi ovunque le particolari condizioni progettuali lo richiedano. E’ da notare come nessuno dei manufatti che si utilizzano normalmente per invasare grandi volumi d’acqua possiede caratteristiche simili. Non le possiedono ad esempio i serbatoi costituiti da grandi vasche in cemento armato la cui capacita di invaso è concentrata in spazi più ristretti possibile, non i laghi artificiali il cui bacino imbrifero sotteso comprende una sola valle o, al massimo qualche altra situata nelle vicinanze quando è possibile collegarla ad esso tramite gallerie o canali di gronda. Quello citato è uno dei vantaggi che presenta la galleria/serbatoio che preme far rilevare fin da queste prime righe. Si vedrà nel prosieguo come ci siano altre condizioni per rendere l’opera assolutamente consigliabile nonostante il suo elevato costo di costruzione.

Il serbatoio-galleria di Napoli

Immaginiamo ora di operare in un territorio densamente popolato la cui alimentazione idrica sia, ad esempio. affidata a due bacini artificiali costruiti nell’entroterra montagnoso e posti ad una distanza di circa 25 Km l’uno dall’altro. Ognuno dei due bacini raccoglie le acque della rispettiva vallata che, durante periodi di grande siccità, non è però sufficiente per soddisfare il fabbisogno anche a causa della notevole dispersione d’acqua per evaporazione a seguito dell’irraggiamento solare. Nel territorio interposto tra i due invasi esistono alcuni compluvi nei quali, durante i periodi piovosi, si scaricano a valle, inutilizzati, notevoli volumi d’acqua che, se fossero invece raccolti ed accumulati, apporterebbero un notevole contributo alla risoluzione del problema. E’ questo l’ambiente ideale per adottare la soluzione tecnica prima descritta e cioè la costruzione di una grande galleria/serbatoio che collega tra di loro i due invasi pur essendo ubicata più a valle e a notevole profondità sotto il suolo. Il suo andamento è all’incirca parallelo alle curve di livello del terreno e quindi interseca o meglio sottopassa tutte le vallette ed i compluvi, nessuno escluso, che si trovano nel territorio, rendendo possibile la raccolta delle acque che le percorrono, nonché il suo accumulo all’interno della galleria medesima dove, al fresco ed al buio, tali acque possono conservarsi inalterate fino al momento del consumo. Il diametro della galleria, da decidersi in funzione delle necessità locali ma comunque non inferiore a 6 metri, consente di realizzare grandissimi volumi di invaso. Ad esempio scegliendo un diametro di 10 m. totalmente compatibile con le moderne tecnologie di scavo, si ottiene un volume utile di serbatoio pari a 75000 mc al chilometro quindi per l’intero percorso in argomento si ha un invaso totale di ben due milioni di mc.circa.
La presa delle acque ha luogo mediante altrettante briglie costruite attraverso il fosso o la valletta intersecata dalla galleria nel mentre capaci vasche di decantazione, filtrazione e disinfezione da costruirsi anch’esse nel sottosuolo con le modalità che saranno più avanti indicate, consentono di effettuare il trattamento necessario per immagazzinare nella galleria acqua potabile cioè pronta ad essere consegnata all’utenza. Da rilevare come lo scavo delle gallerie in roccia ha la caratteristica di richiamare all’interno le acque delle falde che si trovano nel soprastante terreno soprattutto quando, come succede frequentemente, sono presenti fessurazioni o faglie nell’ammasso roccioso atrraversato dalle opere. Questo fatto, che normalmente costituisce un notevole impedimento per il prosieguo dei lavori di scavo, nel nostro caso rappresenta un grande vantaggio in quanto consente la raccolta di preziosa acqua naturalmente potabile e che va ad aggiungersi a quella raccolta in superficie. A titolo di esempio valga il caso delle gallerie autostradali sotto il Gran Sasso dove è stata captata una portata d’acqua potabile di oltre 1.5 mc al secondo, non prevista in origine ed attualmente utilizzata per alimentare importanti acquedotti del teramano e dell’aquilano.
In definitiva l’opera che si propone di eseguire, per integrare la potenzialità dei due invasi artificiali presi ad esempio, è un serpentone sotterraneo dell’estesa di circa 25 Km avente un diametro di circa 10 m, internamente rivestito in calcestruzzo.e quindi con un volume utile totale di circa due milioni di metricubi . In corrispondenza di ognuna delle vallette sottopassate dalla galleria si costruisce una griglia di presa e, nella finestra di accesso alla galleria principale oppure in apposito manufatto sotterraneo anch’esso scavato in roccia, una capace vasca di decantazione, filtrazione e disinfezione delle acque.
Il grande serbatoio così realizzato costituisce una enorme capacità in grado di effettuare la compensazione trimestrale di tutte le portate d’acqua disponibili e quindi non solo di quelle raccolte come indicato ma anche di quelle prodotte dai due invasi preesistenti che, dopo depurazione, vi possono essere immesse per essere conservate anch’esse al buio e al fresco. I laghi artificiali, così svuotati, restano pronti a raccogliere le acque delle successive piogge.
In definitiva questi sono i vantaggi della galleria/serbatoio:
– nessun danno all’ambiente essendo le opere per la quasi totalità sotterranee;
– nessuna perdita d’acqua per evaporazione, sfioro dei serbatoi o perdita di altro genere;
– possibilità di conservare a lungo l’acqua senza che abbia a subire alterazioni di sorta.
– viene immagazzinata acqua potabile cioè pronta per essere consegnata all’utenza senza alcun ulteriore trattamento;
– costruendo il serbatoio/galleria ad una quota opportuna è possibile recapitare l’acqua a gravità fino al domicilio dell’utenza senza bisogno di pompe;
– vengono intercettate tutte le vallette esistenti nel territorio e quindi sfruttata tutta l’acqua di pioggia che vi precipita nei periodi piovosi;
– viene raccolta l’acqua delle falde sotterranee presenti nel territorio sopra la galleria;
– costruendo delle vasche di decantazione di grande capacità è possibile ottenere la laminazione delle portate di piena evitando danni provocati, durante le piogge eccezionali, da alluvioni o esondazioni dei rii.

Da segnalare come, nel caso non si volesse turbare la falda soprastante i lavori, la moderna tecnica di scavo e costruzione del rivestimento della galleria consente di mantenere nel fronte di lavoro e all’esterno una pressione artificiale atta ad operare senza influire minimamente nell’ambiente esterno

3. CONCLUSIONI

Messo in evidenza che la risoluzione del problema idrico dei territori nei quali scarseggia la disponibilità di fonti perenni non può essere affidato esclusivamente ai laghi artificiali ma che occorre sfruttare il sottosuolo per ricavarvi servizi come quelli idrici che in superficie occupano enormi spazi e provocano danni all’ambiente, si è proposta la realizzazione grandi serbatoi tramite gallerie circolari scavate in roccia. Al vantaggio principale di un’opera del genere che è quello di potere, grazie alla sua notevole estesa longitudinale, percorrere ampi territori e quindi raccogliere le acque piovane di bacini imbriferi molto ampi, se ne aggiungono molti altri puntualmente elencati nella nota. Un esempio completo di serbatoio galleria è in dettaglio descritto nella nota “L’approvvigionamento idrico dell’Isola d’Elba” visibile in questo stesso sito.

Vai all’indice

INDIETRO AVANTI

UN SERBATOIO PARTICOLARE PER VENEZIA, CITTÀ’ PARTICOLARE PER ECCELLENZA

 

 

Serbatoio per Venezia

1. Premessa

Una quindicina d’anni or sono veniva bandito un appalto concorso per la progettazione e costruzione di alcune opere acquedottistiche per la città di Venezia. Chi scrive queste note ha fatto parte dello staff progettuale di una delle cordate di imprese concorrenti all’assegnazione ed ha proposto la soluzione di seguito descritta che, accettata e completata nelle varie parti, è stata presentata ufficialmente al concorso. Per i suoi contenuti tecnico-economici essa, a giudizio di chi scrive, aveva tutte le caratteristiche per vincere l’appalto nel mentre è rimasta lettera morta avendo il committente, per motivi completamente estranei ai progetto-offerta, deciso di non realizzare in nessun caso le opere. Si è trattato quindi di un notevole sforzo progettuale praticamente inutile che si ritiene ora descrivere almeno sommariamente per non perderne del tutto le qualità molto interessanti.
Mancando totalmente di copie dei documenti ufficiali, hanno fatto fede soltanto i ricordi del lavoro svolto; pertanto potrebbero esistere delle differenze, soprattutto nei dettagli, rispetto all’originale. Tale inconveniente non inficia gli scopi qui da raggiungere che sono quelli di illustrare una soluzione particolare ed interessante di un grosso problema.

 

2. Oggetto dell’appalto concorso

La progettazione riguardava la costruzione ex novo delle opere di adduzione, stoccaggio e sollevamento d’acqua per l’acquedotto di Venezia insulare destinate a sostituire quelle attualmente esistenti a loro volta costituite da due condotte sublagunari da 800 mm di diametro che corrono parallelamente e ad ovest del Ponte della Libertà e cioè del ponte attraverso il quale si accede con strada e ferrovia a Venezia ed al serbatoio di raccolta e compenso chiamato Cisternone con annessa centrale di sollevamento ancora oggi ubicati in prossimità di Piazzale Roma a Venezia. Le caratteristiche richieste e quelle adottate per le tre opere principali da realizzare e cioè condotte di adduzione, serbatoio di accumulo e centrale di sollevamento vengono riportate nel seguito.

2.1. Condotte di adduzione

Si tratta di due condotte sublagunari del diametro di un metro da costruire parallelamente al ponte della Libertà per collegare la terraferma in località S. Giuliano alla piccola isola di S. Secondo dove dovevano sorgere il serbatoio di compenso e la centrale di sollevamento .

2.2. Il serbatoio di raccolta e compenso

E’ questa l’opera più importante e difficile da realizzare trattandosi di un serbatoio per acqua potabile della capacità di mc 40.000 totalmente ricavato sotto il fondale marino nelle immediate vicinanze o addirittura sotto l’isola di S. Secondo a scelta dell’Impresa proponente e quindi in prossimità della nuova centrale di sollevamento di cui al punto seguente. Onde evitare nella maniera più assoluta che potessero verificarsi in serbatoio delle infiltrazioni della soprastante acqua salata, tutta la vasca doveva essere protetta, in tutti i lati da, una apposita intercapedine.

2.3. La centrale di sollevamento.

Doveva sorgere nell’Isola di S. Secondo ed essere completamente sotterranea allo scopo di non alterare l’aspetto esterno dell’Isola in precedenza comprendente un fortino militare in muratura circondato da una arginatura in terra.

 

3. Considerazioni preliminari

Nel mentre nessuna difficoltà poneva la costruzione delle condotte sublagunari da un metro di diametro in un ambito lagunare come quello in argomento avente un fondale di circa un solo metro d’acqua e praticamente privo di manufatti di sorta, non altrettanto poteva dirsi della realizzazione del serbatoio annesso alla centrale. Ricavarlo, come richiesto, nel sottosuolo di un’isola così piccola come quella di S. Secondo avrebbe significato distruggerla totalmente e quindi, agli occhi di chi scrive, costituiva una decisione errata in partenza. Era chiaro come l’Isola da sola potesse contenere solo la centrale di sollevamento e niente altro. Anche la realizzazione di una grande vasca in cemento armato di tipo tradizionale e a lato dell’isola, al di là del canale navigabile che la affianca, ricavata sotto il fondo della laguna e per di più munita della richiesta intercapedine, poneva dei problemi di costruzione, ed inoltre di gestione e manutenzione in caso di guasti delle pareti ma soprattutto del fondo. Si temeva pertanto che un soluzione del genere non venisse accettata dal committente. Si vedrà invece come l’opera proposta risolvesse tale problema in maniera semplice ed economica.

 

4. La soluzione scelta

Considerato che alla ditta concorrente era data ampia libertà di scelta, si è pensato di proporre un’opera che si imponesse per funzionalità, minori costi di costruzione e facilità di esercizio, controllo e manutenzione anche se completamente diversa da quella sommariamente indicata nel bando e se del tutto inusitata. Tali risultati sono stati raggiunti prevedendo di modificare radicalmente le condotte sublagunari da costruire e cioè affidando loro non solo il compito, previsto dal bando, di trasporto dell’acqua dalla terraferma all’isola di S. Secondo ma, in aggiunta a questo, quello di fungere da serbatoio di accumulo. La notevole estesa ed la particolare ubicazione sublagunare rendeva infatti possibile di realizzare, al posto di due semplici condotte, due lunghi contenitori perfettamente orizzontali, di sezione adeguata per costituire il richiesto invaso di 40.000 mc ed atti, al tempo stesso, al trasferimento dell’acqua per tutto il percorso necessario, con perdite di carico ridotte al minimo.
In pratica si sono previste due condotte parallele del diametro di ben 3,60 m posate, come previsto sotto il fondo lagunare e caratterizzate da particolarità tecniche adeguate ai compiti che erano destinate a svolgere, il tutto come sarà avanti spiegato.
Risolto il problema del grande serbatoio nessuna difficoltà si sarebbe incontrata nella costruzione nell’Isola della sola centrale di sollevamento quasi totalmente interrata e senza quindi gravi danni all’ambiente.

 

5. Caratteristiche costruttive delle condotte/serbatoio

La fase di realizzo delle grandi condotte serbatoio, è stata oggetto di uno studio particolare svolto dall’impresa costruttrice che ha saputo trovare valide soluzioni ai numerosi problemi posti da opere sublagunari particolari come quelle in argomento.
Si trattava di posare due condotte del diametro interno di 3,60 m sotto il fondo lagunare ad una quota di – 7.00 m dal medio mare al fine di avere, per sicurezza, una copertura di almeno un metro di materiale fangoso, appoggiate ed ancorate su apposite cavallette opportunamente fondate.
Ognuno dei due manufatti era composto sostanzialmente da una tubazione in acciaio di adeguato spessore, protetta sia internamente che esternamente da apposite vernici e, soprattutto, munita di un complesso rivestimento esterno avente lo scopo di appesantire la condotta al fine di evitarne il galleggiamento a svuotamento totale d’acqua ed inoltre di costituire la richiesta intercapedine di sicurezza. Allo scopo si è previsto di fasciare la tubazione di acciaio con un materassino di PVC ad alta permeabilità e quindi di rivestire il tutto con uno strato di circa 35 cm di calcestruzzo a sua volta protetto da una ulteriore mano di vernice (Vedi sezione tipo allegata).
Ne è risultato un manufatto avente un peso proprio appena superiore alla spinta di galleggiamento della condotta piena d’aria. Ciò avrebbe facilitato, come sarà spiegato più avanti, il varo ed il trasporto del manufatto sotto il pelo dell’acqua fino a portarlo nella sua sede definitiva considerato che si era deciso di realizzare il manufatto senza il prosciugamento della trincea di posa. Il materassino in PVC permeabile costituente una camera circolare di 5 cm di spessore di separazione tra tubazione in acciaio e rivestimento in calcestruzzo era destinata a contenere acqua potabile in pressione (quella stessa che alimenta la rete di Venezia) che, oltre ad impedire, grazie appunto alla sua elevata pressione, qualunque immissione di acque esterne, consentiva di verificare con continuità la tenuta idraulica della condotta. E’ infatti chiaro che il verificarsi di una qualunque rottura o perdita nella tubazione di acciaio o del rivestimento esterno in calcestruzzo avrebbe comportato la perdita di pressione dell’intercapedine in argomento e quindi fatto scattare l’allarme.
Ed ecco l’organizzazione del cantiere di costruzione delle due grandi condotte/serbatoio.
Si è innanzitutto previsto che ognuna delle due condotte fosse monolitica per tutta la sua lunghezza di 2.8 Km, perfettamente orizzontale, appoggiata ed ancorata ad una quota di -7 m dal medio mare su cavallette costituite da coppie di pali in cemento armato collegati in alto da una traversa in profilato di acciaio ed entro una trincea di scavo realizzata sempre in presenza dell’acqua della laguna. La costruzione ed il varo della condotta doveva aver luogo entro una vasca di lavoro provvisoria in cemento armato da realizzare nella estremità verso la terraferma in località S. Giuliano, per una lunghezza atta a contenere le varie fasi lavorative e collegata, tramite strade provvisorie, alla viabilità di terraferma onde facilitare il trasporto dei materiali e mezzi di lavoro. La vasca di lavoro, ovviamente mantenuta asciutta e provvista di binari e carrelli per il sostegno e la movimentazione della grande barra di tubazione in lavoro, presentava, lato Venezia, un foro, munito di guarnizione in gomma di tenuta dell’acqua marina, attraverso il quale tutta la colonna man mano che ne procedeva la costruzione, doveva uscire in laguna ed essere spinta verso l’Isola di S. Secondo tramite paranco con catene ad anello e ad azione continua fino a completamento dell’intero percorso. Durante la spinta, che, come già detto, era praticata senza soluzione di continuità giorno e notte, e fino al definitivo posizionamento sulle cavallette, la colonna tubolare era sostenuta da portali galleggianti muniti di paranchi i quali, dato che la tubazione presentava, come detto, un peso relativamente modesto grazie alla spinta di galleggiamento, permettevano di mantenere il manufatto a pochi centimetri di distanza dalle cavallette precedentemente costruite. Nel caso si fosse presentata la necessità, non prevista ma pur sempre possibile, di sospendere temporaneamente i lavori, era sempre possibile appoggiare e fissare provvisoriamente la parte di manufatto già costruita sulle cavallette in C.A. abbassandola, con la manovra dei paranchi, di detti pochi centimetri.
Le principali fasi lavorative previste sono le seguenti:

A) scavo della trincea di posa in presenza d’acqua con scavatori posti su chiatte e transitanti nel canale di San Secondo che corre parallelamente e vicino alla zona dei lavori o direttamente sulla trincea appena scavata. Il materiale di risulta è in parte depositato lungo il bordo di scavo e, quello in esubero, asportato;

B) Infissione, sempre in presenza d’acqua della laguna, mediante battipalo e di prolunga verso l’alto, delle cavallette prefabbricate di appoggio ed ancoraggio della tubazione e loro controllo con sommozzatori;

C) costruzione della condotta entro la vasca di lavoro e suo varo continuato giorno e notte. In pratica sono previste più squadre per svolgere contemporaneamente e rispettivamente, da monte verso valle cioè da S.Giuliano verso S. Secondo, i seguenti compiti :

– costruzione di un tronco di tubazione metallica lungo 4 metri mediante saldatura elettrica di elementi calandrati di lamiera di acciaio
– verniciatura esterna ed interna del tronco di tubazione in acciaio successivo ;
– posa in opera, nel tronco in lavoro successivo, del materassino permeabile di PVC;
– posa in opera della cassaforma esterna metallica circolare per il getto del rivestimento in calcestruzzo e del ferro d’armatura;
– getto del rivestimento in calcestruzzo, sempre del tronco successivo;
– smontaggio della cassaforma esterna di getto;
– verniciatura finale esterna del tronco di manufatto finito;
– assistenza alla spinta continua della colonna di tubazione;
– varo dei portali galleggianti, regolazione e controllo del posizionamento piano-altimetrico della colonna.

Ogni squadra lavora sulla colonna in continuo lentissimo movimento. La velocità di spinta è calcolata in modo da consentire ad ogni squadra di portare a termine il proprio compito nell’intervallo necessario perché la barra percorra un tratto di 4 metri corrispondente alla lunghezza di ogni tronco. Finito il tronco in lavoro ogni squadra passa a quello successivo, con continuità giorno e notte.

D) Una volta ultimata la costruzione ed il contemporaneo varo dell’intera colonna lunga 2.8 Km si procede al suo posizionamento definitivo sulle cavallette e cioè al suo abbassamento di pochi centimetri azionando i paranchi dei portali galleggianti e all’ancoraggio tramite sommozzatori che provvedono alla posa delle staffe metalliche avvitate alle cavallette e alla tubazione;

E) Costruzione di n. 5 pozzetti lungo il tracciato al fine di consentire l’accesso alla condotta/serbatoio per eventuale lavori di pulizia e manutenzione interna. Ogni pozzetto contiene le apparecchiature di rilievo e trasmissione della pressione dell’acqua contenuta nell’intercapedine.

F) Rinterro della trincea di scavo

 

6. Caratteristiche principali delle tubazioni-serbatoio

La descrizione fatta dei manufatti costituenti le condotte/serbatoio e quella delle varie fasi di lavorazione assieme al fatto che non si è previsto di dover prosciugare l’area di lavoro, danno una chiara idea dell’economia ottenibile nella loro realizzazione soprattutto se si compie il paragone con i costi che si sarebbero dovuti sostenere per la costruzione di un serbatoio tradizionale in cemento armato da ben 40.000 mc, munito di intercapedine accessibile e realizzato totalmente sotto il fondo lagunare.

L’opera proposta, nel mentre non presentava inconvenienti di sorta né dal punto di vista dell’esercizio acquedottistico né da quello della sua manutenzione, essendo costituita da due manufatti idraulicamente indipendenti uno dall’altro, consentiva l’esecuzione dei lavori di pulizia o di manutenzione senza interrompere il rifornimento idrico. L’acqua immessa al limite della terraferma in località S. Giuliano nelle due tubazioni/serbatoio nelle quali poteva assumere un’altezza variabile da 3.60 m (serbatoio al massimo invaso) e minima pari a circa m 1.20, poteva giungere fino alla centrale di sollevamento con perdite di carico ridotte al minimo data la grande sezione delle due tubazioni e considerato il loro funzionamento a pelo libero. La parte inferiore di tubazione per un’altezza media di m. 1.20 era destinata a contenere un volume di riserva da utilizzare in casi eccezionali e per costituire il carico idraulico necessario per il trasporto dell’acqua a serbatoio vuoto, tenuto presente che la tubazione era perfettamente orizzontale. Lungo il tracciato erano presenti i pozzetti di ispezione attraverso i quali era possibile entrare nella condotta svuotata d’acqua per effettuare gli eventuali lavori di manutenzione. In ogni pozzetto era prevista l’installazione delle apparecchiature di rilievo e trasmissione in tempo reale della pressione dell’acqua immessa nell’intercapedine al fine di avere un controllo continuativo della assoluta integrità del serbatoio. Nel punto di arrivo, in prossimità dell’Isola di San Secondo, era prevista la costruzione del pozzetto di presa delle tubazioni di aspirazione delle pompe, pozzetto ricavato inferiormente alla generatrice inferiore delle due tubazioni al fine di consentire il prelievo sotto carico dell’acqua.

La centrale di sollevamento, facente anch’essa parte nell’appalto concorso ma non trattata nella presente nota, doveva alimentare , oltre alla rete di distribuzione di Venezia, anche l’intercapedine di 5 cm , già descritta ed interposta tra tubazioni di acciaio e rivestimento in calcestruzzo, intercapedine tenuta costantemente sotto controllo tramite le apparecchiature indicate. E’ evidente che la condizione affinchè detta pressione si mantenga costante è soltanto quella che vi si registri portata nulla. Una qualsiasi perdita
d’acqua, anche minima, sia verso l’interno che verso l’esterno della tubazione provocherebbe infatti una rilevante perdita di carico immediatamente rilevata dalle apparecchiature.

 

7. Conclusioni

Si sono sommariamente descritte la costituzione, le modalità costruttive e di esercizio di un serbatoio atto a svolgere in maniera del tutto originale ed inusitata una duplice azione : l’accumulo e, al tempo stesso, il trasporto di acqua potabile a lunga distanza e per volumi notevoli.
Si è potuto raggiungere tale importante risultato prevedendo, al posto delle due condotte adduttrici di progetto originario, due contenitori di grande estesa, modesta sezione trasversale e dotati di speciali particolarità tecniche.
L’opera, a giudizio di chi scrive, rappresenta un valido esempio di coerenza tra manufatti da costruire e situazione ambientale nonchè di grande funzionalità ed economia di costruzione e di esercizio.

INDIETRO AVANTI

DEL PROBLEMA IDRICO DELL’ISOLA D’ELBA HANNO SCRITTO

Copertina della rivista nella quale è stato pubblicato l’articolo su maxi serbatoio-galleria dell’Isola d’Elba

i media e l’acqua potabile dell’Isola dì’Elba

 

GALLERIE E GRANDI OPERE SOTTERRANEE – Periodico trimestrale riconosciuto dal C.N.R. della Società Italiana Gallerie – Patron Editore

Nel n. 75 dell’aprile 2005 è riportato in lingua italiana ed inglese un riassunto del progetto di massima con figure allegate

 

IL TIRRENO
QUOTIDIANO DEL GRUPPO L’ESPRESSO
EDIZIONE PIOMBINO-ELBA

Sabato 15 giugno 2002

Pioggia nel serbatoio
Al meeting della Faita presentato il piano
per l’autosufficienza idrica dell’isola

Veduta prospettica del serbatoio-galleria nella soluzione futuro con percorso totale

Sotto questo titolo il cronista C.R. descrive il convegno organizzato il 13.06.2002 a Portoferraio riassumendo, come segue, le caratteristiche principali del maxiserbatoio da ricavare nel sottosuolo elbano attorno al M. Capanne:

Lo spunto per “ragionare fuori dall’improvvisazione”, come ha detto il presidente della Faita, Alberto Sparnocchia, è stato offerto dalla presentazione di un’ idea-progetto del tecnico acquedottista Marcello Meneghin.
L’idea è quella di creare attorno al monte Capanne un serbatoio sotterraneo ad anello capace di raccogliere e conservare le precipitazioni invernali. Si calcola che piovano sull’Elba 200 milioni di metri cubi l’anno di acqua buona, a fronte di un fabbisogno di 15, massimo 20 milioni di metri cubi.
Il problema è che il picco delle precipitazioni coincide con le minime esigenze, e non vi è modo, ora, di conservare il prezioso liquido. Per un primo stralcio funzionale di circa un chilometro, capace di centomila metri cubi, si spenderebbe quanto il costo annuo di per rifornirsi con le bettoline: 7 miliardi di vecchie lire.

Per quanto concerne l’interessante intervento del geologo Luciano Campitelli l’articolo così prosegue:

Il progetto non è neppure nuovo: il geologo Luciano Campitelli ha ricordato come dal 1982 giaccia negli uffici della Comunità Montana un suo studio sulle risorse idriche, che indicava un’analoga via per l’autonomia idrica dell’isola. Il professionista ha poi ricordato come con l’ attuale rifornimento via condotta sottomarina l’Elba sia sottoposta a un triplice rischio: di salute innanzitutto, poiché le falde del Salcio dalle quale si preleva l’acqua per la Val di Cornia (e l’Elba) sono (per la vicinanza con Lardarello) inquinate dal boro. E che ciò non sia un gratuito allarmismo lo dimostrano le notizie per le quali, fermi restando a livello europeo gli attuali limiti dell’inquinante, le falde che dissetano la Val di Cornia andranno chiuse al 31 dicembre 2002. In modo molto italiano si sta sperando che tali limiti di legge vengano innalzati, per non trovarsi in brache di tela. E questo è il secondo rischio. L’ultimo riguarda la non remota possibilità di cedimento della condotta sottomarina: i primi 9 chilometri – è stato detto – sono sottoposti da tempo ad un eccessivo stress meccanico.

L’articolo termina riportando in sunto gli interventi del consigliere regionale Leopoldo Provenzali (Fi), dell’assessore alle Risorse idriche della Comunità Montana, Pietro Galletti, di rappresentanti elbani dei Verdi, Rifondazione e Social Forum sempre in tema di rifornimento idrico dell’Isola d’Elba.

 

IL TIRRENO
QUOTIDIANO DEL GRUPPO L’ESPRESSO
EDIZIONE PIOMBINO-ELBA

Martedì 25 giugno 2002

Acqua, al convegno gli esperti hanno bocciato i dissalatori

Il Tirreno torna a parlare del problema idropotabile dell’Isola d’Elba riportando alcune delle affermazioni del sottoscritto. Quella riguardante l’intervento del geologo Luciano Campitelli così recita testualmente:

Dell’intervento del geologo elbano Luciano Campitelli, Meneghin afferma che “ha fornito le prove per le quali l’Elba potrebbe, tramite utilizzazione razionale delle proprie risorse, diventare autonoma e autosufficiente nell’alimentazione idropotabile, e, affermazione altrettanto importante, che non sussistono, dal punto di vista geologico ed ingegneristico, ostacoli di sorta alla costruzione della galleria/serbatoio”. Campitelli, inoltre, ha messo in allerta gli amministratori sui “pericoli veramente gravi che sta correndo l’isola per la elevata probabilità che la Val di Cornia debba improvvisamente sospendere del tutto le sue forniture, vuoi per la presenza del boro, che renderebbe inutilizzabile l’acqua, vuoi per le precarie condizioni della condotta sottomarina.

Spiegato l’intervento del tecnico Carlo Mauri, che da specialista in impianti di trattamento acque qual è dichiara che:

dall’installazione di impianti di desalinizzazione dell’acqua marina o di quella salmastra non possano derivare, per l’Elba, grandi risultati.

L’articolo prosegue riportando le seguenti precisazioni del sottoscritto:

Tra gli argomenti da ribadire – prosegue Meneghin – figurano alcune caratteristiche del serbatoio-galleria, come quella di contenere non acqua grezza da sottoporre a trattamento, bensì acqua pronta per essere consegnata all’utenza senza alcun intervento. La stessa può infatti arrivare nella maggior parte delle case elbane direttamente per caduta grazie alla sua quota altimetrica pari a 150 metri sul mare. È evidente – aggiunge – l’alto grado di sicurezza di un servizio di questo genere in quanto non soggetto né alle bizze dell’energia elettrica, né alla precarietà degli impianti di trattamento o di sollevamento. Ben diverso il caso degli attuali acquedotti la cui funzionalità è condizionata da fattori determinanti: la Val di Cornia che, come detto dal dottor Campitelli, può entrare in crisi senza preavviso; i pozzi che possono quanto prima essere interessati da infiltrazione di acqua marina che ne comprometterebbe totalmente l’utilizzazione; le bettoline che richiedono una spesa annua di ben 7 miliardi di vecchie lire che possono anche mancare. Nulla di tutto questo nel caso del serbatoio-galleria che, una volta riempito durante l’inverno-primavera, è in grado di mettere a disposizione ben 2 milioni di mc d’acqua fresca e sicuramente potabile. Altro aspetto è quello dei serbatoi: “All’Elba – dice Meneghin -, quando si parla di tali strutture si è soliti riferirsi a capacità utili di qualche centinaio di mc, in qualche caso, ritenuto eclatante, di due, tremila mc. L’invaso del serbatoio galleria in progetto è previsto in circa 2 milioni di mc. La differenza, notevolissima, può dare una chiara idea dei risultati ottenibili”. Altra sottolineatura, Meneghin la riserva al tema della la sicurezza igienica, che un servizio come quello idrico deve tassativamente presentare: “In tal senso – sostiene – una delle caratteristiche fondamentali di un acquedotto è quella di mantenere le condotte sempre in pressione, senza alcuna deroga. È infatti questa la sola condizione perché gli insetti, le radici, le sostanze inquinanti sempre presenti nel terreno attraversato dalle tubazioni, non possano penetrare nei tubi essendone impedite dalla fuoriuscita d’acqua a forte velocità che si verifica in corrispondenza delle fessure o delle piccole rotture”.

 

IL TIRRENO
QUOTIDIANO DEL GRUPPO L’ESPRESSO
EDIZIONE PIOMBINO-ELBA

Domenica 30 giugno 2002

PROGETTO FAITA
Nasce un comitato a sostegno
del deposito sul Capanne

Il Tirreno in questo numero, torna a parlare, per la terza volta in pochi giorni, del progetto del maxiserbatoio sotterraneo atto a risolvere la crisi idrica elbana.

 

JOINELBA

 

N. 643 – Venerdi 14 Giugno 2002

Emergenza idrica infinitaChe cosa è emerso dalla “riflessione in pubblico” della Faita

E’ possibile leggere in questo numero del giornale, l’articolo di Carlo Rizzoli relativo al convegno tenuto all’Hoter Airone di Portoferraio sul problema idrico Elbano e sulla sua risoluzione a mezzo di un maxiserbatoio da ricavare nel sottosuolo roccioso che circonda il M. Capanne.

 

JOINELBA

N. 648 – Lunedì 1 Luglio 2002

Un comitato a sostegno della proposta Meneghin
La Faita ed Elba2000 rilanciano l’idea dell’Invaso-Galleria del Capanne per placare la sete elbana
Viene dato notizia della riunione effettuata il 26 giugno, presso la Comunità Montana dell’Elba e Capraia, alla presenza dell’Assessore alle Risorse idriche Pietro Galletti, di alcuni tecnici e di un rappresentante del Movimento Elba 2000 allo scopo di costituire un comitato a sostegno del progetto Meneghin.
L’articolo così prosegue:

Il progetto Meneghin, com’è ormai noto, prevede la costruzione di una galleria-serbatoio, ai piedi del Monte Capanne e ad un’altezza di circa 150 mt, in cui far confluire tutte le acque piovane della zona. Esse, al momento, finiscono in gran parte in mare e, in base ai dati pluviometrici, sarebbero largamente sufficienti a soddisfare il fabbisogno elbano.

L’acqua verrebbe distribuita per caduta, e quindi con un considerevole risparmio energetico, alla stragrande maggioranza della popolazione elbana, essendo limitata la percentuale di coloro che vivono in nuclei situati ad una altezza superiore ai 150 mt.

Questo progetto non comporta problemi di impatto ambientale e potrebbe risolvere in modo definitivo la questione dell’approvvigionamento idrico all’isola d’Elba.

Al termine della riunione, è stato deciso di costituire un comitato, del quale faranno parte, oltre a Marcello Meneghin e all’Assessore Galletti, l’Associazione Albergatori, la scrivente associazione, la Confcommercio, la Confesercenti, la Coldiretti, un rappresentante del Movimento Elba 2000 (che insieme alla Faita ha preparato il convegno, all’hotel Airone, per la presentazione del progetto) e il dr. Luciano Campitelli, geologo, che ha una vasta conoscenza del territorio elbano e delle relative risorse idriche e dovrà supportare il lavoro dei tecnici che verranno dal continente.
Lo scopo del comitato è di approntare un progetto di massima, da sottoporre poi all’esame dei rappresentanti delle forze politiche locali affinché lo facciano proprio e lo sostengano: è evidente, infatti, che senza il loro appoggio sarebbe difficile realizzarlo.

 

ELBAOGGI

N. 58 – Giovedì 13 giugno 2002

Crisi idrica: ancora sull’invaso sotterraneo

Fatta la seguente premessa:

Marcello Meneghin, il geometra, esperto di acquedotti, che da tempo propone di combattere la ‘sete estiva’ dell’Elba attraverso la costruzione di un grande invaso sotterraneo in cui raccogliere l’acqua piovana, ci scrive rispondendo ad alcuni dubbi che avevamo espresso a proposito del suo progetto

L’articolista riporta la seguente mia lettera di risposta alle critiche mosse al progetto/idea di grande serbatoio sotterraneo:

 

Veduta prospettica del primo lotto dei serbatoio-galleria che, con un volume di invaso pari a 100000 mc sarebbe in grado di fronteggiare le crisi estive
 Spett.le Elba oggi
Nel numero 59 del 20 giugno 2002 del Vs settimanale sono riportate alcune critiche al mio progetto di sistemazione definitiva del servizio idrico dell’Elba da attuarsi tramite un grande serbatoio sotterraneo.
Dico subito che mi fa piacere leggere commenti, anche se negativi. Quello che dispiace è il constatare come, nonostante la gravità del problema e fatte salve alcune encomiabili eccezioni, iniziative come la mia, rimangano nell’indifferenza generale.
Devo anche far presente che l’aver pensato ad una soluzione particolare per l’Elba non è un’idea stramba che è frullata nel cervello del sottoscritto, semplicemente fa parte delle cose che vado facendo da almeno 40 anni: prima le facevo per lavoro ora lo faccio per passione.
Altra cosa importante: quello da me redatto è soltanto un progetto-idea di massima che è tutto da verificare sia sotto gli aspetti idrogeologici, sia da quelli acquedottistici veri e propri. Ed è questa la richiesta avanzata dalla Faita nel convegno del 13 giugno 2002: esaminare a fondo il progetto e farlo verificare da esperti. Passo a commentare una per una le vostre considerazioni.
A) – Opere forse dannose per l’ambiente Ho buoni motivi per ritenere che le opere che danneggiano meno la bellissima isola siano quello sotterranee come quella da mè proposta
B ) – Opere forse non eseguibili e rischi di natura geologica.  Fatti salvi i doverosi accertamenti cui accennavo, la parte occidentale dell’Elba, come confermato nella numerosa letteratura tecnica esistente e nella relazione che il dott. Campitelli, geologo elbano, ha fatto nel convegno dell’Airone, è costituita da granito di ottima qualità nel quale è sicuramente possibile scavare una galleria da 10 m, di diametro senza creare inconvenienti di sorta. Lavori del genere si sono eseguiti per la viabilità in molte parti d’Italia anche in presenza di rocce molto meno consistenti (in tal caso si registra soltanto un aumento dei costi). Da tener presente che il serbatoio/galleria in argomento presenta solo il vincolo altimetrico di dover essere posto a quota 150 m sul mare mentre per quanto riguarda il suo andamento planimetrico non sussiste alcun obbligo. Durante lo scavo il tracciato potrà quindi esser spostato verso destra o sinistra in modo da incontrare sempre rocce che presentino le migliori caratteristiche, cercando naturalmente di evitare eventuali zone di dubbia consistenza o qualità.
C ) – Impatto ambientale.  Gli inconvenienti principali che di solito si riscontrano nella esecuzione di opere come quelle in oggetto, figurano in primo luogo le turbative del sistema idrico sotterraneo. Ad esempio nel caso delle gallerie stradali fatte sotto il Gran Sasso, si sono provocati gravi danni alla soprastante falda acquifera che, attratta all’interno delle gallerie, ha subito un vero e proprio sconvolgimento. Bisogna però rilevare che nel nostro caso questo fatto anziché essere un difetto grave rappresenta un grosso vantaggio perché è proprio grazie a questo fenomeno che si spera di raccogliere all’interno della galleria/serbatoio grandi portate della preziosa acqua potabile, nel mentre quello che succede alla soprastante falda passa in secondo ordine.
Il secondo inconveniente che presenta in genere lo scavo delle gallerie è dato dalla la necessità di smaltire grandi quantitativi di materiale di risulta. Nel nostro caso io ritengo che anche questo non sia un problema ma che, al contrario, il poter disporre di grandi quantitativi di ottimo materiale lapideo, ed in particolare di granito, in un’isola, sia solo un vantaggio. Potranno con la sabbia ricavata, essere ripristinate spiagge erose dalle mareggiate, con le ghiaie costruire rilevati stradali, ripristinare le cave di S. Pietro secondo il loro profilo originale, si potrà infine disporre di ottimi inerti da calcestruzzi a buon prezzo.
Nessun altro inconveniente dovrebbe essere arrecato all’ambiente essendo tutte le opere sotterranee.
D ) – Stato precario delle reti acquedottistiche esistenti. Nella vostra nota viene detto che le fatiscenti reti acquedottistiche oggi presenti all’Elba non consentiranno l’utilizzazione razionale del grande serbatoio. Occorre però dire che se le reti s
Locandina del Convegno sull’approvvigionamento idrico dell’Elba tenuto nel giugno 2013

ono fatiscenti bisognerà in ogni caso provvedere al loro ripristino con il ché il problema è risolto.
E ) – Costo elevato dei lavori di costruzione del serbatoio/galleria Nella valutazione dei costi di costruzione del serbatoio/galleria bisogna tener presente l’utile derivante dalla vendita del materiale di risulta dello scavo.
In secondo luogo bisogna considerare che il serbatoio va in ogni caso costruito per stralci da subito funzionali e quindi la spesa va diluita nel tempo. Ben diverso sarebbe il caso delle altre opere come ad esempio i bacini di Pomonte e Patresi che non possono essere utilizzati se non a opere completate. E’ inoltre da tener presente che, come già ripetuto, se l’importo di 7.000.000.000 di vecchie lire che ogni anno viene spesa per il trasporto di 50.000 mc d’acqua con bettoline venisse impiegata una volta soltanto per costruire il primo Km di galleria si potrebbe disporre di ben 100.000 mc di acqua (cioè del doppio) ma non per un solo anno bensì per tutti gli anni a venire.
La costruzione del primo tratto di galleria da 100.000 mc di capacità utile sarebbe in ogni caso necessaria qualunque sia il sistema di approvvigionamento che in realtà verrà scelto. Ad esempio se si optasse per i desalinizzatori la presenza di 100.000 mc di serbatoio sarebbe utilissima per coprire il divario comunque esistente tra portata prodotta in quantità costante dai desalinizzatori e quella assorbita dall’utenza che è variabilissima.
F ) – La destagionalizzazione dei flussi turistici come rimedio anche del problema idrico E’ ben vero che con tale provvedimento gli inconvenienti sarebbero ridotti. Per avere un risultato completo bisognerebbe però destagionalizzare anche il tempo atmosferico. Invece l’Elba, per sua fortuna, sarà sempre caratterizzata da stagioni estive di bel tempo con piogge concentrate in autunno-nverno-primavera. Tale fatto, assieme all’inevitabile aumento della richiesta idrica futura ed all’altrettanto inevitabile carenza d’acqua che si verificherà negli anni a venire, rende necessario usufruire razionalmente prima di tutto delle risorse locali il che può aver luogo esclusivamente a mezzo di un grandissimo serbatoio.
Le mie conclusioni finali sul problema del rifornimento idropotabile elbano non possono che essere le seguenti.
A) – L’Isola d’Elba è un ambiente del tutto speciale che come tale non può trovare soluzione dei suoi problemi nella stessa maniera degli altri territori del continente. Anche il problema idrico richiede una soluzione speciale, studiata apposta per l’Elba e che si adatti alle caratteristiche del tutto particolari dell’Elba. Io credo che il grande serbatoio/galleria le possieda tutte.
B ) – Il problema idrico riveste un’importanza basilare per il futuro dell’Isola e quindi non si può trascurare alcuna delle strade che può portare alla soluzione definitiva e tra di queste figura sicuramente il grande serbatoio/galleria.
C ) – E’ necessario provvedere quanto prima alla costruzione di un primo tronco di serbatoio della lunghezza di circa 1 Km con cui si potrà constatare nella realtà quali siano i grandi vantaggi ottenibili nel mentre la presenza di una capacità di 100.000 mc circa che viene così ad essere realizzata costituirà in ogni caso una risorsa importantissima per l’isola d’Elba qualsiasi siano le future modalità della sua alimentazione idrica.
Marcello Meneghin

INDIETRO AVANTI

SULLE CURVE CARATTERISTICHE DELLE POMPE DI SOLLEVAMENTO PER ACQUEDOTTI DA USARE NEI CALCOLI DI VERIFICA IDRAULICA DELLE RETI

curve caratteristiche pompe

1. PREMESSA

Nella progettazione delle reti acquedottistiche si riscontra sovente la necessità di determinare a priori le caratteristiche delle pompe di sollevamento da utilizzare. Il problema diventa arduo quando si è in presenza di sollevamento diretto in rete che, se effettuato con pompe a velocità di rotazione variabile, a fronte di una ottima versatilità, apporta ulteriori incognite. I dati di portata e prevalenza nel punto di inserimento in rete della pompa che soddisfano le varie condizioni di calcolo delle reti idriche complesse sono infatti noti solo alla fine delle iterazioni di calcolo, quando la rete è equilibrata in tutte le sue componenti ivi compresa la pompa stessa. Possono aversi risultati imprevedibili come ad esempio l’utilizzazione della pompa con prevalenze esageratamente elevate e quindi portate quasi nulle oppure prevalenze bassissime e portate cospicue: in ambedue i casi la macchina lavorerebbe con rendimenti inaccettabili.
La soluzione non può che derivare dall’esame di svariate versioni progettuali redatte introducendo nei calcoli le curve caratteristiche di più pompe, esaminandone i dati di funzionamento nelle diverse situazioni e, nel caso della velocità variabile, supponendo di variare anche la velocità di rotazione dei motori dell’intera serie di pompe. Dopo aver definito sia pur a grandi linee quali sono quelle da adottare, si potrà passare alla verifica finale adottando le curve reali relative a pompe effettivamente reperibili in commercio ed aventi caratteristiche similari di quelle calcolate.
Al raggiungimento di tale importante risultato possono contribuire gli accorgimenti suggeriti nel presente articolo.

 

2. POMPE A VELOCITÀ DI ROTAZIONE FISSA

Si usa definire in modo approssimato le caratteristiche di una pompa con due soli elementi: portata e prevalenza. E’ ben noto come dovrebbe invece essere la sua curva caratteristica cioè la funzione matematica che lega la portata alla prevalenza di sollevamento a definirla, potendo la stessa pompa lavorare con portata elevata se è richiesta una modesta prevalenza come pure solo basse portate quando è rilevante il dislivello da vincere.
La curva viene normalmente fornita dal costruttore della macchina ed è la sola che può indicare le sue reali modalità di uso, anche perché consente la verifica dei rendimenti elettromeccanici alle varie condizioni di funzionamento.
Come detto nella premessa è talvolta molto utile poter fissare delle caratteristiche indicative di tali curve che, anche se approssimate, tornano utili per risolvere almeno nelle sue linee generali i problemi idraulici posti dalla rete in esame, tenuto conto oltre alle pompe anche di molteplici fattori anch’essi incerti ed approssimati come sono la costituzione delle maglie, il diametro delle condotte, la presenza o meno di apparecchiature di regolazione, le valvole di riduzione della pressione, i serbatoi presenti in rete ecc. ecc. Si tratta di fattori concomitanti alla cui definizione non si può giungere che per approssimazioni successive.
Allo scopo si ritiene utile porre qui in evidenza alcuni elementi empirici ma che hanno una certa attinenza con quelli effettivi delle pompe di sollevamento in normale uso. Essi sono stati dedotti da un programma applicativo molto usato per la verifica del funzionamento idraulico in moto permanente delle reti di distribuzione degli acquedotti nel quale tali regole sono comunemente adottate.
Si tratta del programma applicativo “EPANET” sviluppato da Water Supply and Water Resources Division (formerly the Drinking Water Research Division) of the U.S. Environmental Protection Agency’s National Risk Management Research Laboratory e diffuse in tutto il mondo.
Le regole consigliate sono le seguenti.
Si inizierà con la definizione di un suo solo punto e cioè della portata e della prevalenza che si pensa sia la più opportuna per il caso in esame. Si tratta del punto Qm/Hm mediano della curva caratteristica da imporre. E’ ben noto come per definire una qualsiasi curva i punti debbano invece essere, come minimo, in numero di tre. Si determineranno gli altri due adottando le regole empiriche riportate nella seguente tabella:

 

 Punto  Portata  Prevalenza
 Q0 (portata zero)  0  1.33 * Hm
 Qm (portata media data)  Qm  Hm
 Qmax (portata massima)  2 * Qm  0

Ad esempio volendo determinare la curva caratteristica di una pompa avente una portata media di 5 l/sec ad una prevalenza di 30 m si otterranno i seguenti dati:

 Punto  Portata  Prevalenza
 Q0 (portata zero)  0  1.33 * 30 = 40 m
 Qm (portata media data)  5  30
 Qmax (portata massima)  2 * 5 = 10 l/sec  0

La rappresentazione grafica della curva è quella indicata con A, B, e C nel grafico allegato di fig.1.

 

Fig. 1 – curve caratteristiche delle pompe

 

3. POMPE A VELOCITA’ DI ROTAZIONE VARIABILE

L’adozione di pompe a velocità variabile, facilitata dalla moderna elettrotecnica ed elettronica che si basa sugli inverter, consente di ottenere grandi benefici per le elevate possibilità di regolazione delle sue portata e prevalenza. Analogamente a quanto detto per le pompe a velocità fissa, anche ed ancor di più per quelle variabili, è essenziale poter introdurre preventivamente nei calcoli le relative caratteristiche sia pure con le inevitabili approssimazioni.
Le regole che legano tra di loro le curve portata/pressione di una stessa pompa al variare della sua velocità di rotazione sono le seguenti, essendo Q la portata, N il numero di giri nell’unità di tempo ed H la prevalenza di pompaggio:

 Velocità di rotazione  Portata  Prevalenza
 N1  Q1  H1
 N2  Q2=Q1*N2/N1  H2= H1/(N1/N2)*(N1/N2)

Facendo riferimento all’esempio prima riportato si avrà quindi:

 Velocità rotazione   Portata  Prevalenza
 N1 = 1 (dato base)  Q0=0  Qm= 5.0l/sec  Qmax= 10 l/sec  H0= 40.0m  Hm= 30.0 m  Hmax = 0
 N = 1.1  Q0=0  Qm= 5.5l/sec  Qmax= 11 l/sec   H0= 48.4m  Hm= 36.3 m  Hmax = 0
 N= 0.9  Q0=0  Qm= 4.5l/sec  Qmax= 9 l/sec  H0= 32.4m  Hm= 24.3 m  Hmax = 0
 N=0.8  Q0=0  Qm= 4.0/sec  Qmax= 8 l/sec   H0= 25.6m  Hm= 19.2 m  Hmax = 0
  N=0.7  Q0=0  Qm= 3.5/sec  Qmax= 7 l/sec  H0= 19.6m  Hm= 14.7 m  Hmax = 0

La rappresentazione grafica delle curve caratteristiche complete è quella della figura n-1  allegata.

4. BREVI CENNI SUI CALCOLI DI VERIFICA DELLE RETI MAGLIATE

Come noto, non è possibile determinare direttamente col calcolo le caratteristiche dei vari componenti delle reti idriche complesse ma bisogna invece procedere per tentativi tramite una successione di verifiche di schemi predefiniti.
Di contro sono notevoli le possibilità offerte dai moderni programmi di calcolo delle reti magliate in quanto, oltre a considerare schemi idrici anche molto complessi per costituzione delle maglie e per la presenza di apparecchiature idriche anche in grande numero e di qualsiasi tipo (valvole, pompe sia a giri fissi che variabili, serbatoi inseriti direttamente in rete, pozzetti di interruzione ecc. ecc.), consentono di simulare lunghe sequenze di reti in moto permanente tenendo conto delle variazioni che intervengono nel periodo temporale da esaminare e definendo tutti gli elementi di funzionamento ivi compresa l’evoluzione dei serbatoi direttamente inseriti in rete. Si tratta di risultati notevolissimi con i quali è possibile prevedere a tavolino le soluzioni ottimali di progetto. Ovviamente la bontà dei risultati dipende dalla qualità dei dati di partenza che bisogna introdurre in quanto, come detto, si debbono sempre fare delle verifiche di una rete fissata a priori. In questo senso, per quanto riguarda specificamente gli impianti di sollevamento, diventa importante la possibilità di potere esaminare il comportamento di diversi gruppi pompa ripetendo più volte la verifica a seconda del tipo e del numero di pompe che si intende provare. Da rilevare, a tale proposito, come una stessa seduta di calcoli, possa comprendere non solo una rete che viene esaminata nella evoluzione di periodi anche prolungati, ma anche più reti diversificate delle quali il computer determina in sequenza tutte le preimpostate varianti rendendo rapida la disamina dei risultati e la scelta della soluzione ottimale. Si potranno quindi vagliare soluzioni che si diversificano nella scelta dei tracciati o dei diametri delle condotte, nella presenza o meno di serbatoi di compensazione, nella diversa evoluzione delle richieste di rete e, in virtù delle indicazioni fornite nel presente articolo, nella portata e prevalenza delle pompe e, a parità di pompa, nel cambiare di ora in ora la sua velocità di rotazione.

5. CONCLUSIONI

Si sono indicate delle regole empiriche per poter tracciare le curve caratteristiche portata/prevalenza di pompe siano esse del tipo tradizionale a giri fissi come pure a velocità variabile. Si tratta di determinarne l’andamento di massima necessario ma sufficiente per le verifiche generali delle reti di distribuzione con il calcolo di insiemi acquedottistici anche complessi, oggi reso possibile dall’uso dei computer.
La procedura qui consigliata consiste nell’effettuare una nutrita serie di verifiche usando, per gli impianti di sollevamento, delle serie di curve caratteristiche delle pompe in modo da determinare la macchina che, nella prima fase di calcoli, risulta ottimale. Si potrà allora effettuare la verifica definitiva ricercando tra quelle disponibili in commercio la pompa di caratteristiche simili a quella suddetta ed utilizzando la curva caratteristica reale fornita assieme dal costruttore della pompa stessa e controllandone, in detta fase, anche i rendimenti elettromeccanici.
Nell’articolo la indicazione delle formule empiriche da usare è completata da un esempio di determinazione pratica delle curve caratteristiche di una pompa considerata funzionante alla tradizionale velocità fissa e, successivamente, determinando una serie di curve anche per la eventuale utilizzazione a diverse velocità di rotazione.
Per maggiori dettagli sull’uso delle pompe vedi “L’utilizzazione delle elettropompe a velocità variabile negli acquedotti” in questo stesso sito

 

LA REGOLAZIONE DEGLI IMPIANTI DI SOLLEVAMENTO DEGLI ACQUEDOTTI

 1. PREMESSA

Impianto di sollevamento acquedotti
Impianto di sollevamento acquedotti

Gli impianti di sollevamento degli acquedotti di tipo tradizionale sono costituiti da una serie di pompe che innalzano l’acqua dal serbatoio annesso agli impianti di produzione a quello superiore di solito previsto in testa alla rete, con asservimento ai livelli di invaso.
Impianti acquedottistici così concepiti hanno svolto per decenni il loro compito in maniera semplice ed affidabile.
Le grandi possibilità offerte dalla moderna tecnica acquedottistica hanno però in questi ultimi tempi promosso una profonda trasformazione del settore con miglioramento del servizio offerto all’utenza ed una notevole economia nelle risorse disponibili e particolarmente nei consumi energetici e nei volumi d’acqua potabile.
I vantaggi ottenibili sono notevoli ma richiedono una attenta risoluzione di numerosi problemi legati alla concezione degli impianti e alle diverse modalità della loro gestione.

2. POMPAGGIO CON ASPIRAZIONE DA SERBATOIO E MANDATA IN SERBATOIO

 

Regolazione a massimo livello del serbatoio di arrivo – P = pompa

I serbatoi posti all’aspirazione e alla mandata delle pompe, anche se sempre più spesso sostituiti da altri dispositivi idraulici, svolgono un ruolo molto importante in quanto, attuando la separazione idraulica delle pompe dalla condotta di alimentazione della rete , eliminano ogni trasmissione di colpi d’ariete in essa. Esplicano inoltre, soprattutto se il volume di invaso è cospicuo, una utilissima funzione di compensazione di eventuali sbalzi della portata sempre possibili per i motivi più disparati.
Considerato che il dislivello topografico da vincere con il pompaggio è fisso, questi impianti sono costituiti esclusivamente da pompe a velocità di rotazione costante funzionanti in parallelo e ad intermittenza. Le possibilità di regolazione sono le seguenti.

2.1 Asservimento al livello massimo di invaso del serbatoio di arrivo.

Si tratta del tipo di installazione che si incontra più frequentemente e che forma l’oggetto della trattazione specifica visibile nell’articolo “La regolazione dei serbatoi di compenso degli acquedotti”
In questa sede ci
si limita a ribadire che la soluzione in argomento, produce l’effetto di avere il serbatoio di arrivo sempre al massimo livello il che, se da un lato presenta un notevole vantaggio, dall’altro gli impedisce di svolgere la compensazione delle portate, compensazione che viene in gran parte effettuata direttamente dalla produzione. Altro lato positivo del sistema è dato dalla semplicità ed affidabilità di funzionamento.

2.2 Asservimento ad un grafico giornaliero di riempimento/svuotamento del serbatoio di arrivo.

 

Impianto di sollevamento acquedotti
Regolazione a livelli imposti del serbatoio di arrivo .- P= pompa – L=misuratore livello – In rosso il collegamento elettrico-elettronico o via radio.- E’ schematizzato io grafico dei livelli imposti

 

grafico livelli serbatoio
Esempio di diagramma dei livelli dgiornalieri  da imporre al serbatoio

 

L’asservimento delle pompe ad un prefissato diagramma giornaliero di riempimento/svuotamento del serbatoio di arrivo, detto anche regolazione a livelli imposti del serbatoio, offre il vantaggio di utilizzarne tutto il volume utile in tutte le giornate dell’anno e quindi di ottenere una buona compensazione delle portate durante le giornate di consumo elevato e, più in generale, una diminuzione della produzione diurna a favore di quella notturna in tutte le giornate in cui i consumi sono bassi o medio bassi, giornate che, come ben noto, sono statisticamente in numero preponderante. Ciò torna particolarmente utile negli acquedotti più complessi ed in caso di acquedotti alimentati da fonti diversificate.
Gli aspetti costruttivi e di esercizio di
un sistema come quello in argomento sono molteplici e sono trattati a parte nell’articolo citato al punto precedente. 

Si sottolinea che  il tipo di regolazione di cui si tratta  rappresenta l’optimum in molti tipi di acquedotto e quindi deve essere tenuto in debita considerazione pet gli ottimi risultati

3 POMPAGGIO CON ASPIRAZIONE DA SERBATOIO ED IMMISSIONE DIRETTA IN RETE.

L’eliminazione di uno o di più serbatoio previsti nello schema classico sopra descritto, se da un lato costringe a rinunciare ad alcuni dei benefici che, come detto in precedenza, tali strutture presentano, dall’altro consente di ottenere consistenti vantaggi nel mentre è possibile ovviare alle lamentate deficienze adottando particolari accorgimenti tecnici. Gli impianti possono essere costituiti sia da più pompe di tipo diversificato a seconda delle portate e delle prevalenze da vincere sia da pompe singole a velocità variabile aventi portate e prevalenze anch’esse adeguate al fabbisogno. Sono possibili le seguenti varianti.

3.1 Asservimento alla portata in uscita

Impianto di sollevamento acquedotti
Regolazione a portata imposta in uscita dalla centrale.- P=pompa .- Q=misuratore di portata

 

Esempio di grande acquedotto regolato in funzione della portata in uscita ed, in variante, a velocità di rotazione delle èompe prefissata

In questi impianti viene installato, nella condotta di uscita e subito a valle delle pompe, un misuratore di portata con trasmissione in tempo reale dei dati al sistema di controllo che provvede automaticamente a variare la portata sollevata in funzione delle richieste della rete. In altri termini quando la portata tende a salire viene messa in moto una pompa più potente o, quando sono presenti pompe munite di inverter o di altro dispositivo di regolazione dei giri, aumentata la velocità di rotazione di quella già in servizio, fino a raggiungere la stabilità della portata in uscita. Al diminuire della richiesta ha luogo il procedimento contrario e cioè la diminuzione della portata sollevata. Impianti di questo tipo non solo consentono di immettere in rete volumi d’acqua sempre adeguati alle richieste dell’utenza ma, soprattutto, consentono di variare, assieme alla portata, anche la pressione di pompaggio. In dettaglio sia con il funzionamento di pompe a giri fissi funzionanti in parallelo sia mediante pompe a giri variabili, è possibile assegnare una maggiore pressione di mandata quando la portata è elevata e quindi vincere le perdite di carico della rete particolarmente elevate in tali frangenti, sia di diminuire la pressione in testa alla rete durante i periodi di bassi consumi soprattutto notturni con il duplice vantaggio di un minore consumo di energia elettrica e di minori perdite occulte di rete. Sono evidenti i vantaggi rispetto agli impianti di sollevamento tradizionali descritti sopra. Tra gli inconvenienti che il sistema presenta è da rilevare innanzitutto la mancanza di stacco idraulico tra mandata delle pompe e condotte che provoca la trasmissione in rete di pericolosi colpi d’ariete cui bisogna far fronte garantendo la gradualità di tutte le manovre delle apparecchiature idrauliche, pompe e saracinesche di chiusura comprese, e mediante installazione di adeguate casse d’aria. Un altro problema è quello inerente la possibilità che la regolazione delle pompe sia influenzata da fattori esterni alla richiesta dell’utenza come può essere la modifica indotta nella portata dai cambiamenti di assetto delle pompe stesse, da cui può derivare un funzionamento del tutto anomalo del sistema. E’ infatti noto come la portata assorbita dalla rete possa essere pesantemente influenzata anche da variazioni della pressione di testa. In particolare quando il dispositivo automatico effettua un aumento o diminuzione nei volumi d’acqua immessi in rete a seguito della corrispondente richiesta di rete, la registrazione del cambiamento di portata effettuata dalla apparecchiatura di controllo provoca una nuova variazione nell’assetto delle pompe dando inizio ad un ciclo ripetitivo che può avere effetti imprevedibili. Il problema va risolto dal computer di comando e controllo il cui programma deve definire le tendenze di consumo consolidate sulla base di una attenta interpretazione dei dati di arrivo e predisporre opportunamente l’intervento delle pompe. Si tratta di procedure ben note e comunemente adottate nei programmi relativi alle automazioni di impianti anche diversi da quelli acquedottistici nei quali è accertata la necessità di effettuare tutte le regolazioni in modo graduale e tenendo conto delle risposte che il sistema riceve a seguito degli ordini impartiti.

 

3.2 Asservimento ad una prefissata pressione di uscita

 

Impianto di sollevamento acquedotti
Regolazione a pressione imposta all’uscita dalla centrale – P=pompa M= misuratore pressione

 

Si tratta di una regolazione simile a quella precedente ma basata non sul soddisfacimento delle portate richieste dall’utenza bensì sulla necessità di avere una pressione in testa alla rete prefissata ora per ora ed indipendentemente dalla portata stessa. La pressione sarà atta ad ottenere un valore elevato nelle ore di maggior consumo ed un valore minimo durante i bassi consumi e soprattutto la notte al fine di economizzare nell’energia elettrica ed anche nelle perdite occulte che, come ben noto, sono funzione della pressione medesima in condotta. I valori imposti corrisponderanno esattamente a quelli prefissati anche se le portate richieste dall’utenza saranno diversificate : il dispositivo automatico, rilevata la pressione di partenza, la confronta con quella data per l’istante in esame e ordina la variazione nel funzionamento delle pompe onde riportarla esattamente al valore prefissato. L’esperienza diretta effettuata con impiego di questo tipo di regolazione ha dato risultati ottimi  Da rilevare come il grafico di preimpostazione delle pressioni di immissioni in rete può essere modificato stagione per stagione basandosi sui risultati ottenutoi negli anni precedenti ed ottenere quindi il superamento di eventuali deficienze di pressione oppure l’aumento razionale nelle ore diurne nelle quali si verificano statisticamente consumi elevati.

 

 

3.3 Asservimento alla pressione di rete

Impianto di sollevamento acquedotti
Regolazione a pressione di rete imposta ora per ora. P=pompa M=misuratore pressione di rete. E’ schematizzato il grafico della pressione imposta in rete

grafico delle pressioni acquedotto
Esempio di pressione dei punti caratterisstici della rete da imporre giornalmente

Una regolazione di questo tipo costituisce un notevole miglioramento di quella del punto precedente. La rete viene munita di apparecchiatura per il rilievo e la trasmissione in tempo reale della pressione delle condotte di rete nei punti caratteristici del territorio servito. I dati ricevuti dal calcolatore centrale vengono elaborati in modo da determinare i valori medi di pressione che, confrontati automaticamente con quelli prefissati determinano la variazione di assetto delle pompe. Questa regolazione è quella da preferire a tutte le altre in quanto assicura che i valori finali ai punti di consegna dell’acqua all’utenza siano corretti e garantisce quindi la massima economia di pompaggio. La curva delle pressioni da prefissare per tutti i nodi potrà prevedere ad esempio un carico di 35 m alle 9 del mattino quando si prevede un consumo di punta per calare a 30 m alle 12 e restare su tale valore fino alle 17. Alle ore 18 il valore può salire a 35 m per tornare a 25 m alle 20, 20 m alle 22, 18 m alle 24, 15 m dalle 1 alle 4. Dalle ore 5 ha luogo l’aumento della pressione che passa di ora in ora a 17 m alle 6, 20 alle 7, e quindi tornare a 35 alle 9

 

3.4 A orari prefissati.

Si tratta di prefissare, sulla base dei dati reali di funzionamento relativo a giornate similari, le velocità di rotazione  che le pompe devono assumere minuto per minuto nel corso dell’intera giornata e, con ciclo settimanale, giorno per giorno. Una regolazione di questo tipo sembrerebbe non essere atta, sia negli impianti con pompe a giri fissi e sia in quelli con pompe a giri variabili, ad garantire un buon sollevamento idrico. Esperienze dirette hanno invece dimostrato che tali modalità consentono di dare al pompaggio quelle caratteristiche che il gestore ritiene le migliori per fronteggiare i problemi che la rete e l’utenza presentano. Da rilevare che non si tratta di imporre portate o pressioni ma solo la velocità di rotazione minuto per minuto il che significa, per cuascuna preimpostazkione . di lasciare libertà di presskione e di portata della pompa in funzione della sua curva caratteristica e sulla base delle richieste effettive di rete.
Supponiamo ad esempio di esaminare una rete sottodimensionata che, pertanto, risulta gravemente deficitaria nella consegna dell’acqua all’utenza nelle ore di massimo consumo. Ebbene, essendo ben note le ore nelle quali si verificano i consumi di punta, sarà sufficiente prevedere in tali periodi, una forzatura del pompaggio da attuarsi, nel caso di pompe a giri variabili, fissando una elevata velocità di rotazione della pompa, e, negli altri casi, la messa in moto di una pompa avente maggior prevalenza e portata di quanto normalmente previsto. Tale stato di forzatura si prevederà esclusivamente nelle ore di punta, salvo poi tornare a un pompaggio del tutto normale nelle restanti ore e, naturalmente, rientrare entro valori assolutamente minimali per la notte.
Si deve aggiungere che una volta raggiunta la velocità di rotazione prefissata per un determinato orario oppure messa in moto una determinata pompa, il sistema esegue automaticamente la regolazione di dettaglio in funzione della portata richiesta dalla rete senza grandi variazioni nella pressione considerato che le curve caratteristiche portata/prevalenza di sollevamento sono, soprattutto nelle grosse macchine, poco inclinate. L’esame settimanale dei dati reali di funzionamento consentirà di verificare se i rendimenti siano sempre corretti provvedendo, in caso contrario, a modificare le prevalenze imposte a fine di rientrare entro i valori corretti.

 

4 POMPAGGIO CON ASPIRAZIONE DA RETE E MANDATA IN SERBATOIO

Gli impianti compresi in questa categoria sono molto simili, tipo per tipo, a quelli di cui al precedente art. 2 così come simili sono le modalità di regolazione. Pertanto, per le caratteristiche tecniche, si fa riferimento alle descrizioni contenute nell’art. 2 medesimo.
L’aspirazione delle pompe, che nel caso precedente poteva contare su un livello assolutamente stabile quale è quello di invaso, nel caso qui in esame è invece soggetta alle grandi variazioni di pressione che caratterizza la rete. Al vantaggio derivante dal recupero di tutta la pressione residua nelle condotte di aspirazione che consente notevoli economie energetiche date dalla minore prevalenza delle pompe, fa riscontro una grande variabilità nel dislivello da vincere con il sollevamento e quindi delle difficoltà obbiettive nella scelta delle pompe atte a effettuarlo con buoni rendimenti. Vi si può ovviare installando più pompe a velocità variabile funzionanti in parallelo la cui grande elasticità di funzionamento consente di adeguare con continuità il pompaggio, tramite le stesse regolazione prima descritte, alla portata e alla pressione richiesta istante per istante. Un accorgimento necessario è la presenza, all’aspirazione, di dispositivi come le casse d’aria, atte ad attenuare efficacemente, la trasmissione in condotta dei colpi d’ariete.

 

5 POMPAGGIO CON ASPIRAZIONE DA RETE ED IMMISSIONE DIRETTA IN RETE

Vale per questa categoria di impianti quanto detto al precedente art-. 3 con la sola differenza che occorre prevedere i dispositivi di attenuazione dei colpi d’ariete sia a monte che a valle delle pompe.

 

6 CONCLUSIONI

Le brevi indicazioni fornite sulla regolazione degli impianti di sollevamento possono solo dare un’idea delle molteplici possibilità che sussistono nel settore e soprattutto a spingere ogni utilizzazione a non accontentarsi delle soluzioni tradizionali molto diffuse ancora oggi e nelle quali tutti gli automatismi di comando delle pompe si riducono ad alcuni galleggianti installati nel serbatoio di arrivo dell’acqua. La ricerca di soluzioni tecniche adatte volta per volta alle condizioni reali della rete e dell’utenza, possono dare risultati importanti. Alcune di tali soluzioni sono descritte in dettaglio nei vari articoli di questo stesso sito.

PORTATE E PERDITE

 

 

Esempio di pressione e portate nel punto di immissione n rete. Da qui in poi nessuno sa nulla dove e come và a finire quest’acqua

Un elemento che caratterizza fortemente gli acquedotti è la portata valutata nelle sue molteplici accezioni. Grave è la mancanza di dati di portata che si registrano in diversi settori del sistema idropotabile . Ad esempio non è nota con sufficiente precisione come si distribuisce realmente nelle condotte di rete la portata totale d’acqua immessa in rete, non si conoscono le perdite reali distinte condotta per condotta ed in maniera analoga non sono note le portate in uscita nodo per nodo ed in tempo reale che sono elementi indispensabili per la esecuzione. dei calcoli di verifica della rete. Il fenomeno viene illustrato nei seguenti sottocapitoli assieme alle soluzioni tecnico economiche da adotttare per una corretta alimentazione idropotabile dei cittadini.

La trattazione è suddivisa in più parti in base alla data di compilazione.

Torna all’indice di testata per esaminare gli articoli

CARENZA IDRICA ED ALIMENTAZIONE IDROPOTABILE A TURNI ALTERNATI

1. PREMESSA


Un grave inconveniente derivato da prolungati periodi di siccità è quello delle crisi alle fonti che alimentano gli acquedotti e della conseguente necessità di razionamento delle insufficienti risorse idriche allora disponibili. Sono descritti nella nota i frequenti problemi igienici che sorgono ed indicata una loro possibile soluzione.

 

2. EFFETTI DELLA CRISI IDRICA

I provvedimenti che si adottano in caso di grave e temporanea crisi idrica sono nell’ordine:

· In prima fase la sospensione della fornitura d’acqua durante i periodi notturni;
· In seconda fase, da attuare in caso di insuccesso della prima ed in aggiunta ad essa, la sospensione diurna praticata a turni orari alternati mediante chiusura delle saracinesche stradali zona per zona e per periodi più o meno lunghi in funzione della residua disponibilità d’acqua.

Oltre a provocare gravi disagi alla popolazione che si vede privata del rifornimento idrico per molte ore del giorno e per tutta la notte, un servizio turnario del genere comporta anche gravi rischi igienici. E’ infatti ben noto come in ogni realtà acquedottistica siano presenti piccole fessurazioni o rotture delle tubazioni interrate che provocano, durante il normale esercizio, perdite d’acqua per quantitativi pari, in acquedotti in ottimo stato di manutenzione e funzionanti a pressione normale, a circa il 20% del volume totale d’acqua prodotta per arrivare, negli acquedotti vetusti o funzionanti a pressione elevata, fino al 50% di esso ed anche oltre. Fortunatamente la fuoriuscita d’acqua attraverso le piccole fessure, esercita una azione igienicamente protettiva in quanto la forte pressione e velocità che la caratterizza, inibisce ogni immissione all’interno delle tubazioni di liquidi, insetti o altre sostanze inquinanti sempre presenti nei terreni attraversati, azione protettiva che però viene totalmente a mancare quando, per un qualsivoglia motivo, il flusso d’acqua in condotta viene interrotto. Ha luogo, in tal caso, un’azione contraria di aspirazione verso l’interno delle condotte stesse che tendono a svuotarsi per alimentare utenze o perdite poste nelle zone altimetricamente depresse. In definitiva ogni interruzione di funzionamento delle condotte stradali costituisce una probabile fonte di inquinamento che impone, prima della messa in pristino, un accurato lavaggio e disinfezione di tutti i tronchi di tubazione interessati dal disservizio.
Sono evidenti i rischi igienici che si corrono quando l’alimentazione idropotabile di un’intera città viene effettuata, come indicato all’inizio, a turni alternati comportanti ripetute sospensioni e rimesse in servizio dell’intera rete di distribuzione dell’acqua potabile senza che vengano rispettate le regole citate in tema di lavaggio e disinfezione.

 

3. REGOLAZIONE  IDROPOTABILE CORRETTA

La soluzione di molti dei problemi ricorrenti nel rifornimento idropotabile può essere trovata adottando, nella costruzione ed esercizio dei complessi acquedottistici, concetti diversi da quelli tradizionali classici e che presentano, rispetto a questi ultimi, evidenti vantaggi quali economia nelle spese energetiche, minori perdite occulte, corretta consegna dell’acqua all’utenza ed infine una grande elasticità di esercizio che consente di affrontare efficacemente eventuali situazioni di emergenza. Si tratta di una rete di distribuzione, a buon titolo chiamata rete ideale, funzionante a pressione di partenza variabile e che può validamente sostituire quella tradizionale caratterizzata, invece, da vasche di carico poste in testa ad essa con lo scopo di assicurare una pressione costante dell’acqua immessa in rete. L’elemento posto sotto controllo nella rete ideale è invece la pressione finale di consegna dell’acqua all’utenza ritenuta, a ragione, determinante per una corretto esercizio. Per raggiungere tale scopo la vasca di carico, prima descritta per la rete classica, deve essere sostituita da un dispositivo idraulico che, tramite l’impianto di telecontrollo e telecomando dell’acquedotto, varia in continuazione e del tutto automaticamente la pressione con cui l’acqua viene immessa in rete e ciò sulla base di precise modalità di definizione di detta pressione finale costantemente tenuta sotto controllo dal sistema. Quest’ultima dovrà infatti, in ogni giornata, essere elevata nelle ore in cui si verificano le richieste maggiori (ad esempio m. 35 sul tubo), media al pomeriggio quando non si hanno consumi di punta (m.25) ed infine molto bassa (m.15) alla notte quando i consumi sono prossimi a zero. Il dispositivo idraulico, costituito nella rete a sollevamento meccanico da pompe a velocità variabile con immissione diretta in rete ed in quella funzionante a gravità da una o più valvole di riduzione della pressione dotate di servocomando meccanico azionato dall’impianto di telecontrollo, provvede alla regolazione continuativa ed automatica della pressione di testa della rete in modo da riportare quella finale rilevata ai punti caratteristici della rete e trasmessa in continuazione al centro, entro i valori prefissati ora per ora.
Una rete del genere, le cui caratteristiche generali sono meglio spiegate nella memoria ” La razionalizzazione delle reti di distribuzione d’acqua potabile a sollevamento meccanico” visibile in questo stesso sito, presenta, tra l’altro, il vantaggio di fornire una adeguata soluzione del problema inerente la crisi delle fonti che forma specificatamente l’oggetto della presente memoria. Essa consente infatti di limitare durante prefissati intervalli temporali, i volumi d’acqua da distribuire all’utenza, non già, come si usa fare con troppa disinvoltura chiudendo sic et sempliciter l’acqua zona per zona ma invece abbassando ad arte la pressione di esercizio fino al raggiungimento delle necessarie economie idriche e tutto ciò mantenendo comunque una pressione finale in condotta sempre sufficiente per evitare ogni immissione di sostanze dall’esterno dei tubi.
Si dimostra come anche in regime di funzionamento normale ad una riduzione della pressione di esercizio contenuta comunque entro valori atti ad una corretta alimentazione di tutta l’utenza, corrisponda una sensibile diminuzione del consumo idrico totale che si riscontra non soltanto nelle perdite occulte, molto sensibili alla variazione in oggetto, ma anche nelle richieste dell’utenza (tale fenomeno è spiegato nella memoria “Fabbisogno, consumi, portate e perdite nella pratica di esercizio delle reti di distribuzione d’acqua potabile a sollevamento meccanico” . Quando poi, come accade durante il razionamento turnario che qui si vuole propugnare, la pressione viene ridotta molto al di sotto del limite minimo di esercizio (ad esempio portandola ad un valore di soli 5 m di colonna d’acqua sull’asse tubo), allora si riscontrano anche economie idriche conseguenti al mancato rifornimento di gran parte dell’utenza per cui i volumi totali d’acqua consumati durante l’orario di turno sono prossimi allo zero.
In definitiva un possibile razionamento d’acqua della “rete ideale” è quello che si ottiene abbassando la pressione di consegna, per un numero di ore giornaliero definito in funzione delle reali disponibilità d’acqua, fino a portarla al valore minimo ma sufficiente per evitare che le condotte vadano in depressione. Allora la maggior parte dell’utenza è priva del rifornimento idrico ma viene tutelato l’igiene del servizio assicurando, al tempo stesso, una alimentazione minimale ai rubinetti posti ai piani bassi delle case cui gli utenti possono ricorrere in caso di estrema necessità. La metodologia, consentendo anche il ripristino immediato del normale servizio allo scadere dell’orario prestabilito senza dover ricorrere a straordinari lavaggi e alla disinfezione della rete, possiede tutte le caratteristiche per una risoluzione ottimale del problema “Razionamento idrico mediante turnazione”.
Da rilevare infine una interessante caratteristica della “rete ideale” : quella di poter far fronte alle crisi idriche di modesta entità senza togliere del tutto il rifornimento dell’utenza ma semplicemente abbassando la pressione di funzionamento entro valori compatibili con un normale servizio e con la producibilità reale delle fonti. Ad esempio si dimostra come, in una rete funzionante a 35 m di colonna d’acqua rispetto al suolo, una riduzione spinta fino a 20 m., ancora sufficienti per una corretta alimentazione idropotabile, assicura una economia nei consumi totali dell’utenza di ben il 25%.

 

4. CONCLUSIONI

Si sono descritti i pericoli che, nei riguardi dell’igiene, incombono sul servizio idropotabile quando viene attuata l’alimentazione turnaria per far fronte ad eccezionali carenze delle fonti di alimentazione.
La soluzione prospettata del problema consiste nel sostituire alla chiusura delle condotte stradali che si usa effettuare anche se è causa di probabile inquinamento della rete acquedottistica, la riduzione della pressione di esercizio fino a portarla a valori minimi compatibili con la salvaguardia igienica del servizio. Sono indicate anche le caratteristiche da assegnare alla moderna rete di distribuzione per ottenere, assieme a molti altri vantaggi, già noti, anche la possibilità di attuazione di tali provvedimenti.

La soluzione prospettata si riferisce agli acquedotti che alimentano territori pianeggianti ma. in linea di principio. resta valida anche per quelli aventi territori ad altimetria diversificata salvo adottare una specifica  metodologia di regolazione della pressione come sarà indicato in altri articoli del presente sito.

 

FABBISOGNO, CONSUMI, PORTATE E PERDITE NELLA PRATICA DI ESERCIZIO DELLE RETI DI DISTRIBUZIONE D’ACQUA POTABILE A SOLLEVAMENTO MECCANICO

 

1) INTRODUZIONE


Elemento determinante per la conoscenza della rete acquedottistica è il quantitativo d’acqua che, nei molteplici aspetti che vanno dai volumi totali immessi, a quelli dispersi nel terreno a causa delle perdite occulte, alle portate delle singole condotte, a quelle erogate da ogni nodo, ai volumi invasati o svasati dai serbatoi, a quelli richiesti dall’utenza nei vari periodi della giornata e dell’anno, caratterizza, nella realtà, il funzionamento della rete d’acquedotto in genere e di quella a sollevamento meccanico in particolare.
Scopo del presente lavoro è l’esame di alcuni di tali aspetti.

 

2) FABBISOGNO IDROPOTABILE E CONSUMO DELL’UTENZA


La determinazione del fabbisogno idropotabile è stata oggetto di estese e sperimentate ricerche concernenti vari fattori come tipo di utenza, importanza e qualità dell’abitato da servire, il suo grado di benessere, la politica tariffaria adottata dall’ente gestore ecc. che incidono sui consumi e sulla loro distribuzione temporale durante la giornata e durante l’anno tipo.
Dalla numerosa letteratura tecnica esistente in proposito, cui si rimanda per approfondire molto più autorevolmente il problema, si possono ricavare tutti i dati necessari per determinare caso per caso i consumi prevedibili e quindi le portate medie giornaliere e quelle orarie da prendere come base nello studio degli impianti acquedottistici.
Si vuole qui far rilevare un particolare aspetto del problema.
Dall’esame dei dati di funzionamento reali  di acquedotti in normale esercizio e con fabbisogno dell’utenza soddisfatto, si rileva che tra pressione di esercizio e consumo intercorre una mutua relazione riguardante, oltre alle perdite di rete che in tal senso denotano una marcata sensibilità, anche altri fattori poco riconoscibili ma tra i quali possono ragionevolmente annoverarsi:
· le portate utilizzate per usi domestici come docce, lavabi, ecc.
· le portate prelevate da elettrodomestici o da apparecchi vari con bocca di prelievo a sezione fissa;
· le portate utilizzate da privati per impianti di raffreddamento:
· le portate destinate all’irrigazione di orti o giardini e quelle utilizzate per lavaggio macchine.
· le portate prelevate da idranti per lavaggio strade, fontanelle pubbliche, vasche di cacciata per lavaggio fognature stradali o altri usi simili,
· le portate utilizzate per lavaggio condotte e quelle di sfioro dei serbatoi:
La portata istantanea richiesta per gli usi indicati subisce, per effetto della variazione della pressione di pompaggio delle centrali dell’acquedotto e quindi della pressione di tutta la rete, delle modifiche rilevanti che si riflettono sul consumo finale dell’utenza.
Nella fig. n. 1 è riportato, a titolo di esempio, il grafico della portata realmente immessa in una rete d’acquedotto priva di serbatoi di accumulo distribuiti in rete. E’ indicata (con un piccolo sfasamento temporale dovuto a necessità meccaniche dei pennini) anche la pressione di pompaggio. Il funzionamento si svolge secondo due diverse modalità: per le piccole portate, a pressione di partenza fissa (m. 24 su asse tubo) data dal serbatoio pensile posto in testa alla rete, e, per richieste dell’utenza superiori ad una determinata soglia, con pompaggio diretto in rete ed a pressione variabile. Si possono trarre interessanti deduzioni.
Innanzitutto si nota come durante la notte dalle ore 1 alle ore 5 circa, quando il funzionamento ha sempre luogo a bassa e fissa pressione (24 m sulla condotta), la portata minima si stabilizza su un valore costante che si ripete anche in tutte le notti di tutto l’anno, sia che si tratti di periodi di grandi e sia di piccolissimi consumi dell’utenza, per variare solo quando si verificano in rete nuove rotture o prelievi straordinari. Ciò sta ad indicare che la portata in questione è data per la totalità dalle perdite.
Alle ore 7.30 circa il prelievo dell’utenza supera la soglia critica (preventivamente fissata sui 92 l/s circa in uscita dalla centrale) per cui ha inizio il pompaggio in diretta ad alta pressione. La maggiore prevalenza di pompaggio (da m.24 a 36 m. circa) provoca un immediato aumento di portata che passa da 92 l/s circa a 130 l/s circa. Da tale momento in poi la pressione, al variare delle richieste dell’utenza, segue la curva caratteristica della pompa in servizio a seconda dei gruppi di sollevamento messi in funzione dall’automatismo. Risulta impossibile conoscere, anche in considerazione del fatto che non è dato sapere se ciò comporta una insufficiente alimentazione di una parte più o meno grande del territorio servito, quale sarebbe stato il funzionamento qualora il pompaggio fosse rimasto a bassa pressione per tutta la giornata. Si è comunque tracciata a vista, al fine di evidenziarne l’andamento di massima, la curva delle portate che presumibilmente la rete avrebbe richiesto in tale ipotesi ed indicato con colore nero pieno il maggior volume consumato dalle ore 7 alle 12 circa a causa dell’aumento di pressione. La maggiorazione, quantificabile in mc 230 circa, contro un volume di mc 1517 d’acqua che si sarebbe consumata a regime normale, fa ascendere a ben il 15% la percentuale di aumento nel periodo considerato.

 

Fig. 1 = Portata e pressione in uscita da una centrale di pompaggio a pressione variabile

Alle ore 12 circa, con utenza senz’altro alimentata correttamente, viene superata in decremento la soglia critica e l’automatismo impone di passare dal pompaggio ad alta a quello a bassa pressione. Il conseguente calo di pressione (da m. 38 circa a m 24) provoca una diminuzione di portata che dai 99 l/s passa a 76 l/s. Supponendo che la stessa variazione di pressione si verifichi anche in rete (cosa in buona parte vera se si considera la modesta variazione di portata che si verifica nei due casi) ed applicando le regole della foronomia (vedi anche cap. 3):

portata a bassa press.= port. ad alta x sqrt(delta press.)
si ottiene
portata = 99 . sqrt (24/38) = 78

La portata determinata teoricamente sulla base della nuova pressione (78 l/s) si avvicina a quella reale letta sul grafico di pompaggio (76 l/s) confermando, come precedentemente affermato, che la variazione nella pressione di esercizio della rete provoca una variazione di portata assorbita dalla rete che, è totalmente indipendente dalle richieste dell’utenza. Da notare come in regime normale, e cioè senza alcuna manovra delle pompe, ad una diminuzione di portata così rilevante che fosse invece dovuta, ad esempio, ad una grossa utenza che ha chiuso la sua saracinesca di prelievo, corrisponderebbe, con un effetto diametralmente opposto a quello in esame, un notevole aumento di pressione dato dal diverso punto di utilizzazione della curva caratteristica della pompa.
Qualora alle ore 12 non si fosse verificata la manovra descritta e l’impianto avesse invece continuato a funzionare ad alta pressione per il resto della giornata, notte compresa, ben diverso sarebbe stato il volume d’acqua totale assorbito dalla rete nelle 24 ore.
Quanto precede deve chiarire un concetto importantissimo per la corretta gestione degli impianti acquedottistici: poiché il fabbisogno dell’utenza può essere modificato ad arte, il gestore non deve sempre sottostare alle richieste ma deve imporre, ovviamente entro determinati limiti, le condizioni di funzionamento (pressione in questo caso) della rete che più soddisfano l’economia, la disponibilità di risorse, la regolarità di esercizio ecc. ovviando, in determinati casi, anche a deficienze della rete. Cio’ deve aver luogo senza pregiudicare il rifornimento idropotabile e cioè contenendo in ogni caso la pressione entro i limiti massimi e minimi consentiti per una corretta consegna dell’acqua.
Immaginiamo di osservare il funzionamento di un acquedotto senza serbatoi in rete e provvisto di centrali che immettono la loro portata in condotta con possibilità di modificare sia la portata che la pressione di esercizio. Se una zona, ad esempio, è servita da condotte di diametro insufficiente, è possibile, per ovviare alle carenze che ne conseguono, aumentare la pressione di esercizio giornaliero portandola verso il valore massimo ammissibile, mentre se un’altra zona ha delle fonti deficitarie, è opportuno mantenere costantemente sui valori minimi la pressione per economizzare nella portata immessa in rete. Se in altre zone c’è sovrabbondanza di produzione si potrà spingere l’utenza al consumo aumentando la pressione di rete. In ogni caso durante la notte sarà opportuno riportarla ai valori minimi in quanto, in caso contrario, i bassi consumi notturni provocherebbero modeste perdite di carico e conseguenti inutili elevate pressioni in condotta. La diminuzione notturna, oltre a rappresentare una economia diretta della spesa di sollevamento data dalla minore prevalenza delle pompe, riduce notevolmente le perdite di rete con ulteriori minori oneri di produzione dell’acqua come sarà più avanti dimostrato.
Gli effetti indotti in rete dalla pressione non sono determinabili teoricamente in quanto dipendono da fattori variabili rete per rete e del tutto incogniti come la presenza e l’ubicazione delle perdite occulte, la scabrezza effettiva delle condotte distinta condotta per condotta, la presenza di prelievi particolari come quelli descritti particolarmente sensibili alla variazione della pressione di consegna dell’acqua, le modificazioni provocate nella durata dei vari prelievi ecc. ecc. Le cose si complicano ulteriormente quando nella rete sono presenti i serbatoi. Allora alle considerazioni esposte devono aggiungersi quelle relative alle modalità ed ai tempi di invaso e di svaso cui conseguono ulteriori e predominanti necessità di regolazione della pressione e relative variazioni nel fabbisogno effettivo sia istantaneo che giornaliero dell’utenza.
La descritta interdipendenza tra portata assorbita e pressione di esercizio estende i suoi effetti in senso spaziale poiché in uno stesso acquedotto le zone d’utenza alimentate a pressione più elevata avranno consumi specifici superiori di quelle a pressione deficitaria o comunque inferiore. Ne consegue che la determinazione dei consumi reali di una rete, cui si è fatto cenno all’inizio del capitolo, può essere effettuata soltanto partendo dai dati che tengano conto della effettiva situazione dell’utenza, ivi compresa anche la pressione di consegna dell’acqua. A tal fine le modalità che saranno indicate più avanti, essendo basate sulla lettura dei contatori privati periodicamente effettuate per la fatturazione dell’acqua, sono senz’altro le più adatte.
Per completare la disamina degli effetti secondari provocati in rete dalla variazione di pressione si cita un elemento, ben noto ai progettisti degli impianti di sollevamento e che, in caso di pompaggio asservito in automatico alla portata in uscita, incide sulla regolazione. Possono presentarsi due casi:


a) – la portata si mantiene casualmente e per un lungo periodo su valori prossimi alle soglie di intervento degli automatismi (ad esempio messa in moto o arresto di pompe). In linea teorica ha luogo, per tutta la durata del periodo stesso, un dannoso pendolarismo nel funzionamento cioè un continuo alternarsi di ordini e contrordini con effetti negativi sia per gli impianti che per il rifornimento idrico. In realtà tale pericolo non sussiste in quanto ad ogni superamento della soglia ed al conseguente avvio od arresto automatico della pompa, corrisponde, per quanto spiegato sopra, una sensibile variazione indotta nella portata il che elimina ogni incertezza nell’interpretazione del segnale. Soltanto una decisa variazione nelle richieste effettive dell’utenza può provocare un nuovo intervento dell’automatismo: è pertanto assicurata una grande stabilità di funzionamento del sistema automatico di comando e controllo.


b) – durante i periodi di grande modificazioni nelle richieste dell’utenza e conseguente manovra delle pompe (specialmente se si tratta di macchine a velocità variabile che sono in grado di seguirne l’andamento) ha luogo anche una variazione di portata dovuta all’effetto indotto descritto sopra, variazione che finisce per alterare il segnale di base cui è asservita la pompa (portata in uscita) con risultati imprevedibili nella regolazione. Ad esempio in caso di aumento di portata dovuto ad una maggior richiesta di un grosso utente, la stazione di pompaggio, per farne fronte, aumenta sia la portata che la pressione. L’aumento di quest’ultima provoca una ulteriore maggiorazione di portata in uscita con conseguente richiesta di nuovo aumento di pompaggio. Il ciclo potrebbe ripetersi all’infinito con conseguenze disastrose, fatta salva la opportunità di porvi rimedio tramite adatti software del sistema di comando e controllo in base ai quali ogni ad ogni manovra fa seguito un controllo ed una conferma oppure un annullamento della manovra stessa.

 

 

3) LE PERDITE DI RETE

La perdita di rete consiste nel volume d’acqua dissipato nel terreno o comunque non utilizzato dall’utenza a causa di piccole rotture nelle condotte o negli allacciamenti privati. Tale volume comprende di solito anche quello dovuto alle mancate registrazioni dei contatori e ai consumi particolari come lavaggi delle condotte, prove a pressione, annaffiamento giardini e lavaggio strade ecc. raramente sottoposto a misurazione.
In un acquedotto in ottime condizioni la percentuale, così intesa, può variare da un minimo del 10-15% ad un massimo del 30-35% della portata totale immessa in rete, per raggiungere valori molto superiori in caso di acquedotti vetusti.
In questa sede per perdite di rete si intendono le perdite vere e proprie. I volumi d’acqua utilizzati per consumi particolari di cui sopra, in una razionale gestione, devono essere quantificati anch’essi. A tale scopo è necessario che anche le bocche di annaffiamento dei giardini o delle strade, le vasche di cacciata delle fognature ecc. siano munite di contatori e che anche tali consumi entrino nel bilancio idrico generale. Parimenti in caso di lavaggio delle condotte si deve provvedere alla quantificazione dei volumi d’acqua adoperati inserendo dei contatori provvisori nei punti di prelievo dell’acqua dalla rete o, come minimo, stimando dai grafici di portata totale immessa in rete l’aumento di consumo conseguente al lavaggio. Per quanto riguarda le mancate registrazioni si deve aggiungere che sono in parte dovute alla imprecisione ed inerzia proprie dei misuratori cui non è possibile porre rimedio ed in parte al loro funzionamento anomalo generalmente causato da vetustà e che può essere evitato provvedendo alla sostituzione sistematica ad intervallo non superiori a 8-10 anni.
Se vengono applicate tali regole, la differenza fra i volumi d’acqua immessa in rete e la somma dei consumi letti ai contatori privati rappresenta la reale perdita di rete. Trattasi di quantitativi che incidono fortemente sulla economia di esercizio e sulla possibilità di soddisfacimento del fabbisogno dell’utenza e che pertanto, in una corretta gestione, devono essere tenuti sotto attento controllo. Gli elementi di conoscenza di cui si può disporre in ogni realtà acquedottistica sono però molto limitati. Consistono esclusivamente nel volume totale d’acqua di perdita determinabile, come già detto, per differenza tra volumi immessi in rete e volumi fatturati e nella portata istantanea di perdita notturna rilevabile dai grafici dei misuratori dell’acqua immessa in rete. Si può infatti ragionevolmente ritenere che la portata minima notturna registrata da detti misuratori, depurata dagli eventuali prelievi di entità ben nota ed effettuati per alimentare i serbatoi o per forniture notturne particolari, sia, come precedentemente indicato, totalmente dovuta alle perdite di rete.
L’integrazione di quest’ultima portata, considerata giornalmente di valore costante per tutto il periodo intercorrente tra una lettura dei contatori dell’utenza e la seguente, dovrebbe dare, in doppio modo e quindi per conferma di quello già determinato con le modalità descritte, il volume totale d’acqua disperso. Tale equivalenza si verifica raramente in quanto, nella stragrande maggioranza dei casi, la portata dovuta alle perdite, lungi dal mantenersi costante per tutte le 24 ore della giornata, varia in continuazione al variare della pressione che si stabilizza nelle condotte dove sono ubicate le perdite stesse secondo le regole già spiegate.


Per una completa disamina di tale fenomeno si assume come esempio una rete ipotetica avente caratteristiche invero poco adatte per una reale alimentazione idropotabile ma atta ad evidenziare compiutamente il fenomeno che si vuole studiare. Si suppongono noti, come di norma, i grafici giornalieri della portata d’acqua immessa in rete e la pressione di pompaggio dell’impianto di produzione posto in testa alla rete. Essendo nota anche la portata di perdita che si verifica nei periodi notturni di minor consumo secondo quanto sopra indicato, è possibile determinarne i valori anche nei rimanenti periodi sulla base della variazione che subisce , periodo per periodo, la pressione di consegna all’utenza. Infatti, essendo le perdite dovute a rotture, fessurazioni o comunque aperture di qualsiasi tipo esistenti nelle condotte, si possono usare le formule idrauliche della foronomia ed in particolare la seguente:


Qx = Qi . sqrt(Px/Pi)
Dove: Qx = portata da determinare all’istante x
Px = pressione nota all’istante x
Qi = portata nota all’istante i
Pi = pressione nota all’istante i
sqrt = radice quadrata

(N.B.: nuove ricerche hanno dimostrato che la formula valida prevede la radice con esponente 1,18 anziché 2. Ciò comporta un vantaggio ancora maggiore di quello descritto nella presente memoria)

Come risulta dallo schema idraulico della fig. 2 la rete da esaminare concerne un centro abitato servito da un insieme di condotte magliate alimentate da un solo impianto di produzione e sollevamento (S1) munito di vasca di carico posta in testa alla rete. La pressione di partenza è pertanto costante mentre quella di consegna, essendo funzione della portata consumata, varia in continuazione facendo di conseguenza variare anche la portata della fughe d’acqua secondo la legge idraulica descritta.
Nei grafici giornalieri di cui alle fig. n. 3 e 4, relative al funzionamento a pressione di partenza costante, sono illustrate rispettivamente per il giorno di consumo massimo e per quello corrispondente alla media annua, l’andamento della pressione di arrivo ai nodi (pressione media ponderale di tutti i nodi calcolata con apposito programma di verifica della rete magliata ) nonchè la curva delle perdite che si verificano nei due casi calcolata con la formuletta sopra riportata.
Pur trattandosi, come già detto, di un esempio di rete nella quale si sono volutamente esasperati i dati di funzionamento idraulico, si possono trarre delle considerazioni molto interessanti.
Si nota innanzitutto come i periodi di maggiore perdita siano sempre quelli di minor consumo (ore notturne e giornate di basso consumo). Il volume totale giornaliero disperso nel terreno passa da mc 23587 relativo al giorno di consumo max a mc 28343 per quello di consumo medio annuo. Se si considerano le percentuali di perdita rispetto ai volumi totali giornalieri immessi in rete (rispettivamente mc 77760 e mc 51840) si va dal 30% nel giorno di consumo max a 55% in quello medio. Ciò starebbe ad indicare che mediamente solo il 45% della portata immessa in rete raggiunge l’utenza mentre si verificano percentuali ancora inferiori nei giorni di consumo minimo.

 

 

Come si vede i valori di percentuali di perdita calcolati, a causa delle condizioni di funzionamento e particolarmente delle esagerate perdite di carico che presenta la rete scelta ad esempio, sono troppo elevati per trovare corrispondenza nella reale gestione di una rete acquedottistica, si raggiunge però lo scopo di evidenziarne la variazione durante l’anno tipo.

Si vuole ora indicare quali sarebbero le modalità atte a far rientrare nella normalità anche una rete irrazionale come quella dell’esempio,
La soluzione è rappresentata dalla radicale modifica del sollevamento in testa alla rete. Non più vasca di carico e quindi pressione di partenza fissa ma pompaggio diretto in rete a pressione variabile asservita alla pressione rilevata ai punti di consegna.
Come risulta dalle fig. n. 5 e 6 si tratterebbe di prefissare una pressione media alla consegna più bassa (solo 15 m) durante la notte quando sono modeste le richieste dell’utenza e m. 25 durante le ore giornaliere. Sono indicate con linea tratteggiata la pressione di pompaggio necessaria per raggiungere il risultato citato sopra e, in linea continua, la curva delle perdite calcolata in funzione della nuova pressione di consegna ed applicando la formula indicata. Il volume totale disperso giornalmente nel terreno risulterebbe di mc 16852 sia nei giorni di massimo che di minimo consumo con una percentuale pari al 21% nel giorno di consumo max, al 32% in quello medio rientrando quindi entro valori normali. Si potrà inoltre notare come, contrariamente a quanto verificato nella precedente soluzione, le minori perdite abbiano luogo durante il periodo notturno.
Per ulteriore documentazione si descrivono gli effetti realmente indotti nella rete di cui alla fig. n.1 e nella quale si è deliberatamente forzata la pressione di esercizio durante un’intera notte al fine di valutarne le conseguenze nei riguardi delle perdite.

I dati effettivamente rilevati e riportati nei grafici di cui alla figura n. 7, denunciano risultati ancora peggiori di quanto descritto. Si può infatti constatare come la maggiorazione della pressione di esercizio da m. 25 (pressione notturna normale) a m 53 (pressione artatamente mantenuta durante tutta una notte) abbia provocato un aumento del tutto anomalo nella portata notturna consumata che è passata da 23 l/s a 47 l/s ( al raddoppio di pressione corrisponde il raddoppio delle perdite!). Il fenomeno viene spiegato dalla formazione, non casuale, di nuove perdite. Infatti applicando la regola enunciata si evince che la portata nella notte in argomento avrebbe dovuto essere pari a soli 33.5 l/s contro i 47 l/s effettivamente misurati. Si riscontrano pertanto 13.5 l/s di consumo aggiuntivo evidentemente dovuto a nuove rotture nelle tubazioni stradali provocate dalla anomala pressione. Il fenomeno ha trovato conferma nella notte successiva nella quale, pur avendo ripristinato la pressione normale, la portata minima, invece di assumere il suo normale valore di 23 l/s, è rimasta pari a 30 l/s. Il calcolo teorico della portata a seguito della diminuita pressione (da m.53 a m.25) fornisce come risultato 32.5 l/s vicino a quello effettivo.

 

 

 

 

 

 

 

Una ulteriore conferma la si è avuta nelle settimane successive quando le nuove rotture sono state rintracciate e riparate e la portata minima notturna è rientrata al suo valore normale di 23 l/s circa.

Si riportano i dati riassuntivi di funzionamento:

 Data  Pressione notturna  Portata media giornalieral/s – Coeff.  Volume totale giornal.mc  Portata minima notturnal/s – Coeff.  Portata minima calcolatal/s
 26.11.96  25 (normale)  65.7 – 1.00  5676  23 – 0.35  base
 27.11.96  53 (alta)  82.5 – 1.26  7128  47 – 0.72   33.5
 28.11.96  25 (normale)  70.9 – 1.08  6126  30 – 0.46  32.5


Evidenziate come sopra alcune delle caratteristiche che la rete di distribuzione presenta nei riguardi delle perdite si elencano gli accorgimento che, in ogni caso, si devono adottare nella pratica di esercizio.
Innanzitutto deve essere posta la massima attenzione alla pressione di consegna dell’acqua che deve essere, in ogni condizione di funzionamento, quella minima atta ad un ottimale soddisfacimento dell’utenza senza inutili carichi residui, soprattutto notturni, fonte, oltre che di eccessivi dispendio energetico per il pompaggio, anche di esagerate dispersione d’acqua come sopra dimostrato.
In secondo luogo è necessario eseguire per ogni periodo di lettura dei contatori di utenza il calcolo delle percentuali di perdita in modo da avere una prima quantificazione e poterne seguire l’evoluzione nel tempo.
Durante tutto il corso dell’esercizio bisogna inoltre attuare una campagna di ricerca ed eliminazione delle fughe d’acqua eseguendo le necessarie riparazioni e, in casi estremi, la sostituzione di interi tratti di condotta e delle apparecchiature in essa inserite.
Molte sono le metodologie che si usano allo scopo. Tra di esse si cita la ricerca con apparecchi acustici, la ricerca con il metodo della correlazione, la verifica tronco per tronco o zona per zona mediante inserimento di misuratori con o senza chiusura temporanea di tutte le utenze. Tutte queste metodologie, ben note ai gestori degli acquedotti, portano a risultati concreti però sono molto costose e creano notevoli disagi per l’utenza.
Se le micro-perdite presentano, a causa della loro larga diffusione e della difficoltà del loro reperimento, l’inconveniente di un grave e continuo danno economico nell’esercizio della rete, le grosse perdite quali quelle che si verificano in occasione di rotture delle condotte principali hanno un aspetto ancora più preoccupante in quanto le grandi quantità di acqua che fuoriescono dalle condotte possono provocare, oltre a improvvisa mancanza di rifornimento idropotabile, danni anche gravissimi alle sedi stradali, alla circolazione o agli edifici che fiancheggiano le strade. E’ pertanto della massima importanza la loro tempestiva segnalazione ed il pronto intervento per la chiusura del tronco di condotta interessato, salvo provvedere successivamente alla definitiva riparazione. Normalmente la presenza di una perdita del genere viene avvertita dal personale di servizio dall’esame della pressione di immissione in rete che subisce un improvviso calo. Quando la portata della perdita è di entità trascurabile se paragonata alla portata totale immessa in rete oppure quando la rottura non avviene repentinamente ma con una certa progressione o se la zona interessata dalla perdita è alimentata da centrali non custodite, o ancora se gli impianti sono dotati di automatismi di regolazione della pressione in uscita dalla centrale può accadere che tra il verificarsi dell’inconveniente e l’intervento del personale intercorra troppo tempo.
La tempestiva segnalazione delle perdite con emissione in automatico dell’allarme riveste quindi una grande importanza e può ottenersi adottando un insieme di procedure- basate sul raffronto tra dati di funzionamento reali ricavati dagli strumenti di misura installati nelle centrali e nella rete e quelli teorici ricavati dalla verifica del funzionamento idraulico eseguita in automatico e con continuità a mezzo delle apparecchiature di telecomando e telecontrollo delle reti basata sull’uso di potenti computer e di sofisticati programmi applicativi.

Un metodo approassimativo di verifica del funzionamento rete è leggibile cliccando qui
Di grande importanza ed attualità è anche la localizzazione delle perdite resa possibile tramite i programmi di verifica cui si è fatto cenno.

 

4) LA DISTRIBUZIONE TEMPORALE DELLE PORTATE L’analisi della probabile distribuzione nel tempo delle portate richieste dalle reti presenta degli aspetti caratteristici importanti per il funzionamento della rete.

Se si esamina, ad esempio, l’andamento medio dei consumi durante le 24 ore di una giornata dell’acquedotto di una cittadina di medie dimensioni i cui consumi non siano influenzati dalle variazioni di pressione cui si è fatto cenno (vedi seguente fig.8), si nota come si abbiano portate minime dalle ore 1 alle ore 5 circa. Alle 5 ha inizio un rapido aumento che si esaurisce circa alle ore 8 con la punta massima pari a circa 1,5-1,6 volte la media. Le portate subiscono quindi una modesta diminuzione per stabilizzarsi su una portata pari a circa 1,2 volte la media per una durata di circa 7 ore (dalle 11 alle 18). Dalle 18 alle 20 ha luogo un modesto aumento di portata dopodiché ha inizio la fase di diminuzione che si esaurisce, con le portate minime, alle ore 1 del giorno dopo.
Un’altra fondamentale caratteristica del grafico giornaliero dei consumi è data dal valore minimo di consumo notturno intendendo con tale termine il picco minimo, anche se di breve durata, di acqua immessa in rete dalle centrali, valore che si è soliti fissare in una percentuale della portata media giornaliera (ad esempio 30%). Si fa notare invece come esso si mantenga invariato per tutte le giornate dell’anno tipo non essendo influenzato dalle richieste della rete che, nel periodo stesso, sono pressoché nulle.
E’ interessante anche l’andamento del grafico annuo di durata delle portate medie giornaliere ottenuto ordinando i volumi giornalieri in senso decrescente (v. fig. 9). Si nota un punto di flesso che indica come le giornate di maggior consumo (portata media superiore a 1.17 rispetto alla media annua) siano pari a soli 35 giorni all’anno corrispondenti al 10% dell’anno.
Il fenomeno si accentua maggiormente ove si esamini il grafico di durata delle portate orarie durante un anno (vedi fig.9)), caratterizzato anch’esso da un accentuato punto di flesso e dal quale si può rilevare come le ore di maggior consumo (portata media superiore a 1.51 rispetto la media annua) si riduca a sole 450 ore pari al solo 5% dell’anno.
Se ne deduce immediatamente che il dimensionamento delle opere acquedottistiche basato, come di norma, sui consumi critici (ora di punta) comporta un funzionamento che si svolge in modo razionale soltanto per periodi brevissimi mentre nella stragrande maggioranza delle giornate dell’anno esso sarà caratterizzato da pressione sovrabbondante con duplice effetto negativo: inutile dispendio energetico di sollevamento ed eccessiva pressione in rete cui corrisponde una maggiorazione delle perdite di rete come indicato al precedente cap.3.
Sarà invece consigliabile prevedere reti studiate per un esercizio ottimale ai regimi di portata media e medio bassa caratterizzati da un grande frequenza. Ai consumi elevati, molto rari durante l’anno, si dovrà far fronte mediante particolari accorgimenti anche se a consumo energetico elevato. Ne risulterà comunque un bilancio economico vantaggioso essendo al tempo stesso assicurato all’utenza un servizio regolare. Un esempio di rete concepita secondo i principi descritti è riportato, con determinazione dei vantaggi conseguibili, nel n. 3/1998 de “L’ACQUA” con la nota ” La razionalizzazione delle reti di distribuzione di acqua potabile a sollevamento meccanico”

 

 

 

 

5) LA COMPENSAZIONE GIORNALIERA DELLE PORTATE

Le funzioni esplicate dai serbatoi, di grande importanza per l’ottimizzazione dell’esercizio di ogni complesso acquedottistico, sono principalmente due: quella di mantenere una quantitativo d’acqua pronta ad essere immessa in rete in caso di guasti negli impianti di produzione o di richieste anomale dell’utenza, e quella di coprire il divario fra produzione, di solito a portata pressoché costante per l’intera giornata, e le richieste dell’utenza caratterizzate da forti consumi diurni e consumi quasi nulli durante la notte.
In sunto si può dire che le due funzioni sono la riserva di sicurezza e la compensazione giornaliera delle portate. I volumi mediamente necessari a tale scopo sono corrispondenti rispettivamente al 100% ed al 15% del fabbisogno del giorno di massimo consumo anche se, di regola, ci si limita a volumi ben inferiori.
I serbatoi possono essere di due diversi tipi:
· quelli annessi alla produzione, di solito del tipo a terra e caratterizzati da grandi volumi d’invaso, svolgono principalmente il ruolo di accumulo o riserva;
· quelli di rete, generalmente adibiti alla compensazione giornaliera delle portate, sono di dimensioni più contenute e normalmente del tipo in quota (pensili o sopraelevati) cioè con l’invaso altimetricamente ubicato in corrispondenza della piezometrica di rete in modo da rendere possibile l’interscambio diretto di portate con quest’ultima e cioè senza interposizione di apparecchiature idrauliche di sorta (pompe, valvole di regolazione ecc, ecc,).

Grafico giornaiero dei livelli imposti minuto per minuto

Nella memoria “La razionalizzazione delle reti di distribuzione d’acqua potabile a sollevamento meccanico” precedentemente citata, si è dimostrato come non sempre il funzionamento dei serbatoi sia corretto e che, in tali casi, la funzione di compensazione delle portate venga in tutto o in parte a mancare.
Un altro problema, spesso risolto in maniera inadeguata, è quello della regolazione della alimentazione a distanza dei serbatoi sia che abbia luogo tramite condotte di adduzione sia con prelievo da condotte della rete di distribuzione.
La forma più semplice e diffusa consiste nella presenza, nel serbatoio di arrivo, di galleggianti dei quali quello a quota superiore comanda la chiusura dell’adduzione per raggiunto invaso massimo e mentre gli altri, opportunamente posizionati a quote inferiori, provvedono a comandare l’immissione, l’aumento o la diminuzione della portata immessa.
In pratica, con il dispositivo descritto, il serbatoio tende a rimanere sempre pieno e solo nei giorni di massimo consumo, quando la portata della produzione è inferiore alle richieste di punta, ha luogo il suo intervento e la conseguente utilizzazione del volume invasato in precedenza. In tutti gli altri giorni, e specialmente in quelli di basso consumo, la punta viene coperta, in tutto o in parte, dall’impianto di produzione: viene in tal modo a mancare il ruolo di tale impianto che dovrebbe essere quello di immettere in rete le sole portate medie giornaliere. Si deve citare un altro grave difetto che interessa molti acquedotti nei quali i serbatoi di cui si parla si vuotano troppo presto e quando arriva il momento di punta essi sono già vuoti e quindi non possono più contribuire alla copertura delle portate massime richieste dall’utenza.

La soluzione del problema può essere trovata asservendo l’adduzione ad un prefissato grafico giornaliero dei livelli che il serbatoio deve assumere durante la giornata tipo . Salvo una migliore determinazione da effettuarsi in sede di reale esercizio il grafico potrà, ad esempio ( vedi edsempio nel grafico giornaliero dei livelli  imposti ), prevedere il riempimento totale alle ore 6 del mattino quando hanno inizio i consumi dell’utenza, alle ore 9, quando i consumi sono elevati, si potrà prevedere uno svuotamento del 50%, alle 16 del 70% e alle 20 del 80%. Alle ore 01 del giorno dopo avrà inizio il riempimento con un gradiente regolare fino alle ore 6. Il dispositivo automatico effettuerà ad intervalli regolari dei test di controllo e, se i livelli reali risulteranno inferiori a quelli fissati come sopra, comanderà un aumento nell’adduzione in serbatoio. Al contrario nessuna adduzione avrà luogo quando i livelli risulteranno superiori . Una regolazione come quella indicata presenta il vantaggio di consentire lo sfruttamento giornaliero dell’intero volume accumulato durante la notte secondo quelle modalità che il gestore potrà imporre a suo piacimento mediante modifica del grafico preimpostato. Nel mentre nei giorni di consumo massimo sarà possibile effettuare la totale compensazione, negli altri giorni si potrà sfruttare la totale, e in tali casi esuberante, capacità del serbatoio per altri fini, come ad esempio quello di utilizzare cascami di energia elettrica meno costosi diminuendo la produzione giornaliera a favore di quella notturna. Sarà anche possibile mantenere costantemente la produzione sul valore medio giornaliero essendo a forziori garantito che il serbatoio effettua la compensazione in tutte le giornate anche in quelle di bassi consumi.

 

 

6) DETERMINAZIONE DELLE EROGAZIONI ISTANTANEE AI NODI

La razionale gestione di un complesso acquedottistico, soprattutto se a sollevamento meccanico come sono quelli trattati nel presente lavoro, non può, a giudizio di chi scrive queste note, prescindere dalla verifica automatica e continuativa del suo funzionamento idraulico attuata confrontando i dati reali di funzionamento con quelli teorici determinati in tempo reale mediante modello matematico della rete. Oltre ad avere la vera conoscenza della rete, indispensabile per ogni valutazione economica e tecnica di esercizio o di intervento progettuale, in tale ipotesi sarebbero immediatamente segnalate tutte le anomalie di funzionamento come ad esempio rottura di condotte, manovre errate, mancato funzionamento di apparecchiature idrauliche od elettriche, prelievi abusivi ecc. ecc. per avviare gli immediati interventi di riparazione. Alla data attuale, mentre risultano già risolti i problemi relativi alla trattazione matematica di calcolo in moto permanente delle reti magliate anche complesse (serbatoi e apparecchiature idrauliche comprese) e quelli relativi alla sua rappresentazione fisica così come sono risolvibili mediante installazione di adeguate apparecchiature di misura quelli relativi alla determinazione delle condizioni effettive di funzionamento delle apparecchiature idrauliche (pompe, valvole di regolazione ecc.) e dei serbatoi, permangono grandi incertezze su due fattori condizionanti i risultati: la scabrezza reale delle tubazioni, che sono oltretutto variabili durante la vita della rete, ma soprattutto le portate erogate ai nodi argomento questo che forma l’oggetto specifico del presente capitolo.
Gli Enti di gestione sono da tempo dotati di sofisticati programmi per la gestione amministrativa dell’acquedotto con elaboratore elettronico. Viene creata ed aggiornata con continuità una banca dati relativa all’esercizio in genere e cioè ai lavori di costruzione e di manutenzione del complesso acquedottistico, alle domande di allacciamento, ai preventivi spesa e consuntivi dei lavori, alla tenuta dell’anagrafe degli utenti e dei contatori, alle operazioni varie degli utenti (chiusure, riaperture, reclami, manutenzioni, cambio contatori, cambio nome, rimborsi vari, ritardi nei pagamenti ecc, ecc.) e alle letture dei contatori privati e fatturazione dell’acqua consumata.
Si tratta di una grande mole di dati generalmente utilizzati a soli fini amministrativi, dai quali sarebbe possibile ricavare anche le portate d’acqua consegnate agli utenti periodo per periodo e da utilizzare ai fini citati nella premessa di questo capitolo.
Per raggiungere lo scopo sarà innanzitutto necessario redarre lo schema idraulico cioè la rappresentazione planimetrica semplificata della rete nella quale, oltre alle caratteristiche qualitative, geometriche e topografiche delle condotte, siano individuati e numerati i punti singolari (nodi) della rete (incroci di condotte, cambiamento di sezione, punti di allacciamento di utenti particolari ecc.), in cui si suppone concentrato il prelievo da parte degli utenti. All’atto dell’archiviazione dei consumi bimestrali o semestrali di ciascun utente ricavato dalle letture dei contatori, dovranno prevedersi anche i riferimenti a detto schema idraulico.
I programmi applicativi di gestione dovrebbero quindi essere modificati in modo da renderli atti svolgere anche le seguenti funzioni;
· attribuire ad ogni nodo un numero progressivo che lo individui univocamente sia sulla planimetria in scala sia sullo schema idraulico;
· redarre, al computer e parallelamente lo schema grafico deformato della rete che tenga conto di tutte le condotte di rete;
· annessa allo schema idraulico compilare una banca dati con tutte le caratteristiche dei vari tronchi (numero di inizio e fine del tronco, lunghezza, diametro e tipo di materiale costituente la condotta);
· assegnare, mediante opportuni codici memorizzati nella banca dati dello schema idraulico, tutti gli utenti ai rispettivi nodi di appartenenza creando, per gli utenti più importanti, dei nodi fittizi. Questa operazione consentirà di determinare, in occasione di ogni bollettazione, i volumi d’acqua consumati da ciascun nodo nel periodo considerato.

Per quanto riguarda la compilazione dello schema idraulico che sarà poi utilizzato per le verifiche, si devono fare alcune considerazioni.
Per i calcoli si usa utilizzare uno schema semplificato comprensivo delle sole condotte principali in quanto si è sempre ritenuto che quelle secondarie non influiscano sui risultati ma che la loro funzione idraulica si esaurisca in ambito locale. Si è invece constatato che l’eliminazione di quest’ultime condotte provoca un duplice errore. Innanzitutto, pur essendo di piccolo diametro, esse costituiscono una grandissima estesa di tubazioni funzionanti in parallelo alle maglie principali che, se trascurata, comporta un ovvio errore sui risultati finali del calcolo. Il secondo problema, che interessa particolarmente il presente lavoro, consiste nella impossibilità di attribuire razionalmente ai nodi le portate degli utenti che sono allacciati alle condotte da eliminare.
Ora, considerato che i calcoli idraulici sono comunque eseguiti con grande rapidità dagli elaboratori e che le moderne procedure di verifica delle reti magliate sono atte a garantire in ogni caso la convergenza delle iterazioni, è senz’altro preferibile includere nello schema tutte le condotte, nessuna esclusa, rendendo in tal modo più complesso e laborioso lo schema ma più semplice la sua redazione e più attendibile il risultato. Da notare come, nel caso di reti magliate molto complesse, alcuni programmi di calcolo consentono di dividerle in molte sottoreti minori collegate tra di loro da una od anche da numerose condotte. Il programma, ad ogni seduta di calcolo, provvede dapprima ad equilibrare ogni singola sottorete e quindi al collegamento ed equilibratura dell’insieme rendendo in tal modo più veloce e più sicuro risultato. Questa procedura, la cui adozione è in ogni caso consigliabile, oltre a semplificare le operazioni di calcolo eseguite dal computer, fornisce risultati, completi di riepiloghi generali, suddivisi zona per zona, e quindi ne facilita l’utilizzazione anche nel caso di verifica dei consumi zona per zona come si spiegherà più avanti.
Per la determinazione dei consumi ai nodi in oggetto, una metodologia da seguire può essere quella di dividere ogni tronco di condotta in due parti di uguale lunghezza e di attribuire a ciascuno dei due nodi di estremità gli utenti allacciati alla semicondotta adiacente. La semplificazione così attuata rispetto ad altre (ad esempio quella di considerare i consumi uniformemente distribuiti lungo il tronco) fornisce risultati finali sufficientemente esatti.
Sarà possibile, determinare i volumi d’acqua consumati dagli utenti nell’intero periodo di lettura ed attribuibili a ciascun nodo, e da questi ricavare le portate istantanee consumate in ogni nodo utilizzando gli elementi noti e cioè, trattandosi di verifica del funzionamento di un dato istante, la portata totale che le centrali immettono in rete nell’istante medesimo e il cui valore deve corrispondere alla somma dei consumi attribuiti ai nodi.
L’analisi degli elementi definiti con le modalità descritte porta a importanti conclusioni. In pratica si trasformano i dati di lettura dei contatori privati in semplici coefficienti di proporzionalità che applicati ai valori di portata totale della rete (portata immessa in rete dalle centrali), consentono di determinare, con una procedura che qui definiremo sbrigativa, la portata effettiva istantanea di ciascun nodo. E’ evidente che vengono attribuiti ai nodi tutti i consumi anche quelli non dovuti all’utenza quali sono ad esempio le perdite occulte della rete che, in questa sede, sono supposte distribuite in tutto il territorio proporzionalmente ai consumi degli utenti. I valori istantanei da utilizzare nei calcoli sono pertanto tacciati da un duplice errore: quello inevitabile dovuto alle letture che essendo trimestrali od addirittura semestrali possono contenere degli scostamenti con le particolari condizioni di consumo dell’istante considerato e quello, anch’esso sistematico, dovuto al fatto che le eventuali perdite di rete sono assimilate e conglobate nei consumi dell’utenza. In caso di reti vetuste nelle quali la percentuale di perdita è rilevante e quindi rilevante la sua incidenza sui risultati finali, si può ovviare, almeno in parte, adottando una migliore procedura che consiste nel determinare l’ammontare in l/s (continui e costanti per ogni ciclo di 24 ore) delle perdite, ammontare che corrisponde alla portata minima notturna immessa in rete dalle centrali. Per controllo la portata così determinata per tutte le giornate del trimestre e considerata, in prima approssimazione per quanto spiegato al precedente cap. 3, costante per tutte le 24 ore, determina un volume totale trimestrale di perdita che deve coincidere con quello ricavato dalla differenza tra volumi immessi in rete e volumi contabilizzati in base alle letture dei contatori privati.
Le portate totali istantanee attribuibili ai nodi (portate esterne) sono date dalla somma di due valori: la portata dovuta alle perdite (costante per 24 ore) determinata come sopra e quella dovuta ai consumi veri e propri pari al residuo immesso in rete dalle centrali negli istanti considerati. A sua volta i due quantitativi vanno suddivisi tra tutti i nodi seguendo due diverse modalità: la portata dovuta alle perdite, supposta uniformemente distribuita in tutta la rete, può essere attribuita ai nodi in proporzione alla superficie interna delle condotte di competenza di ciascun nodo, l’altra in proporzione dei coefficienti di consumo trimestrale determinati, come indicato, sulla base dei consumi letti ai contatori.
Un esercizio razionalmente organizzato consente di adottare, nei calcoli in argomento, anche modalità più rigorose. Invece di considerare costante per tutta la giornata la portata di perdita, essendo ben note sia le portate di perdita effettiva notturna sia le pressioni reali in tutta la rete, è possibile calcolare in continuo, seguendo le modalità indicate al cap. 3, i volumi totali d’acqua che la rete dissipa nel terreno ed utilizzare tali valori per la ripartizione tra tutti i nodi. Nella distribuzione della perdita tra tutti i nodi si potrebbe infine applicare zona per zona un coefficiente correttivo che tenesse conto della incidenza della pressione media di consegna.
Come già detto con le metodologie descritte, ivi compresa anche quella più sofisticata, si determinano soltanto i coefficienti medi di proporzionalità da utilizzare per distribuire tra tutti i nodi la portata effettiva immessa in rete dalle centrali nell’istante considerato e depurata delle perdite. Anche tale operazione può essere fonte di errori in quanto i coefficienti di proporzionalità vengono applicati all’utenza considerata come omogenea mentre, in realtà, potrebbe non esserlo.
Si ricorda infine che la portata prelevata dagli utenti, come già spiegato  è funzione anche della pressione di consegna la cui variazione nel tempo e da zona a zona introduce un ulteriore fattore di imprecisione nelle determinazioni di cui si discute.
Per eliminare o ridurre gli errori inevitabilmente presenti è necessario suddividere la rete in più sottozone inserendo dei misuratori nelle condotte di collegamento in modo da conoscere per ciascuna di esse, la portata in entrata ed in uscita, quella minima notturna che rappresenta le perdite ed infine gli utenti alimentati e poter quindi operare la suddivisione zona per zona.
Quando ciò risulti materialmente impossibile (ad esempio per la eccessiva presenza di condotte che collegano tra di loro le varie sottozone) si inseriranno dei misuratori solo nei tronchi principali di connessione il che consentirà, in sede di taratura del modello matematico della rete, di effettuare, oltre ai controlli generali di congruenza, anche il confronto tra le portate istantanee calcolate e quelle effettive che transitano in detti tronchi e, in caso di differenze non trascurabili, esaminarne le caratteristiche ed applicare dei coefficienti correttivi zona per zona.
Ciò è reso possibile dal fatto che, essendo noti i sensi di percorrenza dell’acqua in tutte le condotte, sono definite le linee di “displuvio” che delimitano la zona di pertinenza di ciascun punto di misura e quindi i nodi da correggere zona per zona.

Ulteriori e preziose indicazioni non possono che provenire dalla sperimentazione diretta e continuativa effettuata durante il normale esercizio e che risulterà tanto più efficace quanto più numerose saranno le apparecchiature di misura installate a macchia d’olio in tutto il territorio servito come ad esempio venturimetri e manometri di rete di cui non si finirà mai di sottolineare l’importanza. Ad esempio qualora il sistema di verifica automatica segnalasse in alcune zone e durante il periodo notturno di bassi consumi una pressione reale sensibilmente inferiore a quella calcolata ciò starebbe ad indicare che le piccole perdite invece di essere uniformemente distribuite nell’area servita come supposto a priori e come è auspicabile, sono, al contrario, maggiormente concentrate in dette zone. In tale evenienza due sarebbero le strade da seguire: modificare le portate di perdita attribuita ai nodi oppure intensificare la ricerca ed eliminazione delle perdite nelle zone critiche. Ambedue le procedure conducono ad un miglioramento dei risultati dei calcoli di verifica. Non si può far a meno di sottolineare l’importanza della seconda procedura con la quale si raggiunge un importante risultato: quello di orientare in continuazione la ricerca ed eliminazione delle perdite diffuse verso quelle zone dove queste sono maggiormente presenti.
Dalle esperienze fatte nella verifica del funzionamento idraulico di reti reali nelle quali si sono potuti confrontare i risultati teorici con i dati effettivi, si è constatato che gli elementi definiti secondo la procedura sbrigativa sopra descritta sono sufficientemente precisi. Le portate finali che si ottengono, essendo basate sul consumo medio trimestrale, rappresentano il fabbisogno istantaneo più probabile di ogni singolo nodo depurato dalle eventuali e precarie anomalie e tenuto conto di tutte le circostanze reali di alimentazione dell’utenza tra cui anche la pressione media effettiva di consegna dell’acqua zona per zona che, come ben noto, influenza i consumi specifici.
D’altro canto lo scopo del calcolo di verifica, da effettuare durante il normale esercizio, non è quello di rappresentare matematicamente e pedissequamente il comportamento reale della rete nei vari istanti bensì quello di evidenziare gli scostamenti tra dati di funzionamento ideale negli istanti medesimi e la reale situazione. Le portate da introdurre nel calcolo sono pertanto quelle mediamente auspicabili e non quelle effettive condizionate dalle anomalie del momento.
In definitiva le verifiche condurranno ai seguenti risultati:
–  in regime di normale funzionamento le portate determinate secondo le modalità descritte si avvicinano a quelle reali e pertanto i valori risultanti dai calcoli corrispondono a quelli reali;
–  al verificarsi di una anomalia (rottura di condotta, grande prelievo abusivo d’acqua, apertura di uno scarico, sfioro di un serbatoio ecc. ecc.) la conseguente maggior portata in uscita, prontamente registrata dai misuratori delle centrali di sollevamento, invece di venir attribuita al nodo competente va a distribuirsi, essendo applicate le regole sopra enunciate, tra tutti i nodi. Ne consegue una portata al nodo dove si è verificata la perdita nettamente inferiore a quella reale e quindi una pressione di calcolo notevolmente superiore di quella effettiva, mentre per i rimanenti nodi, cui vengono attribuite portate approssimate per eccesso, i risultati del calcolo di verifica denunciano pressioni inferiori rispetto a quelle reali. In altri termini i calcoli, al verificarsi dell’anomalia, denunciano pressioni di tutta tranquillità per tutti i nodi della rete eccettuati quelli interessati dalla nuova perdita per i quali viene invece segnalata una depressione addirittura superiore a quella effettiva. Sono in tal modo enfatizzati gli effetti provocati in rete dalla perdita e consistenti in un cono rovescio di depressione con vertice in corrispondenza della perdita medesima che pertanto diventa facilmente ubicabile.

 

7) CONCLUSIONI

 

Alcuni dei problemi che assillano l’esercizio degli acquedotti, come ad esempio la presenza di rilevanti perdite di rete, sono stati descritti nei loro aspetti pratici con motivazioni ed alcune verifiche teoriche. Ciò ha consentito di formulare proste per il miglioramento funzionale ed economico dell’esercizio dei complessi acquedottistici con particolare riguardo per quelli a sollevamento meccanico.
Sempre in tema di portata si sono esaminate nel punto 6) le modalità da seguire per determinare con buona approssimazione le erogazioni effettive ai nodi della rete in servizio normale. E’ questo un compito arduo ma essenziale per la messa a punto delle procedure di verifica idraulica continuativa ed automatica basate sul calcolo della rete magliata in moto permanente effettuato in tempo reale e che costituiscono un vero salto di qualità nella gestione automatizzata della rete. L’avvio di tali procedure, più volte annunciato da importanti Enti di Gestione, non risulta, a chi scrive queste note, ancora attuato con successo per le molte difficoltà che, in sede di applicazione pratica, sorgono proprio per le determinazioni in argomento. In tal senso, lungi dal poter considerare chiuso l’argomento, si confida di aver fornito, con il presente lavoro, degli spunti per intravederne la soluzione.

I

AVANTI

UNA RIVOLUZIONARIA METODOLOGIA DI VERIFICA PRATICA DELLE RETI

verifica pratica acquedotti

1) PREMESSA


La letteratura tecnica ed anche la stampa qualificata si profondono in articoli, pubblicazioni di pregevoli manuali, relazioni ecc. ecc. aventi per oggetto le modalità da seguire per risolvere i gravi problemi che colpiscono il sistema di approvvigionamento idropotabile e quello italiano in particolare.
Vi si leggono sofisticate teorie sulla efficienza dei complessi acquedottistici, sui calcoli di verifica, su nuovi schemi idrici, sulla regolazione della pressione di esercizio, sulla ricerca ed eliminazione delle perdite occulte ecc. ecc.
Chi, come chi scrive, si dedica alla pratica di esercizio degli acquedotti, non può che essere entusiasta di tanta tecnica nuova ma non può allo stesso tempo non rilevare alcune incongruenze e suggerire degli interventi semplici atti ad assicurare risultati immediati da affiancare a quelli che possono derivare da tanta pregiata teoria.
Una regola spesso raccomandata è quella del risparmio idrico da realizzarsi non solo con un attento uso dell’acquedotto domestico ma anche con l’applicazione di frangigetto atti a ridurre la portata erogata dai rubinetti dove vengono applicati. A tale riguardo, pur ritenendo necessario scongiurare un inutile sperpero della preziosa acqua, si rileva come quella indicata sia una metodologia che, anche nel caso del tutto improbabile di una sua adozione generalizzata, darebbe comunque risultati ben modesti nel mentre costituirebbe sicuramente un disagio per l’utenza costretta ad economizzare su un bene di prima necessità come l’acqua. Infatti una diminuzione dei consumi spinta all’osso, produrrebbe un immediato aumento della pressione di rete cui conseguirebbe un’altrettanto immediato aumento delle perdite occulte accusato dalle condotte colabrodo che costituiscono la generalità degli acquedotti nostrani. Si può affermare che una buona parte dell’acqua economizzata come detto, sarebbe subito dispersa per l’aumento delle perdite occulte provocata dalla maggiore pressione di rete.
Da rilevare anche l’aspetto economico che impone, a tutte le aziende di gestione, un bilancio di gestione in pareggio e che pertanto deve contare su entrate non soggette a forzature come quella del risparmio idrico. Il risultato non potrebbe che comportare un aumento delle tariffe di vendita dell’acqua teso anch’esso ad annullare il supposto beneficio economico di una minor spesa dell’utente.
Un’altro provvedimento che va per la maggiore è quello definito distrettualizzazione e che, sia in caso di impiego tipo temporaneo e sia definitivo, ha comunque lo scopo di consentire un controllo puntuale delle perdite di rete ed anche una regolazione ottimale della pressione di esercizio che contribuirebbe in maniera notevole alla riduzione delle perdite stesse. Anche in questo caso si devono evidenziare i lati negativi di una metodologia basata sulla suddivisione delle reti in tante piccole porzioni, chiamate appunto distretti, il che significherebbe né più ne meno che una deleteria rinuncia degli enormi vantaggi presentati da una rete di distribuzione ben interconnessa, suddivisione che nessun gestore dovrebbe essere disposto ad accettare.

 

2) LA TECNICA PROPOSTA

Si propone un sistema di controllo molto semplice ed atto a dare immediati notevoli vantaggi reali di esercizio delle reti acquedottistiche .
Innanzitutto bisogna far rilevare come sussista in tutti gli acquedotti moderni un elemento che da solo è in grado di definire, con rapidità ed in continuo, il funzionamento effettivo del servizio in tutte le sue componenti.
Tale elemento è la pressione dell’acqua in rete.
E’ ben noto come un fuori servizio di una parte qualsiasi dell’acquedotto si traduca immediatamente in una anomalia di pressione che possiede , come vedremo, alcune interessanti proprietà. Gli esempi sono molteplici. Se una fonte viene chiusa per un qualunque motivo, se una pompa va fuori servizio, se una condotta accusa una perdita improvvisa, se un utente effettua un prelievo eccezionalmente elevato, in tutti questi ed anche in molti altri casi è la pressione di rete a risentirne tramite un abbassamento del proprio valore pressorio e cioè della superficie piezometrica. E’ quindi chiaro che, per avere sotto controllo l’acquedotto in tutte le sue parti, è sufficiente l’esame dettagliato della pressione di consegna dell’acqua all’utenza. Ovviamente per raggiungere tale risultato è necessario installare in rete un grande numero di manometri atti a rilevare e trasmettere al centro di controllo in automatico ed in tempo reale la pressione effettiva di più punti caratteristici della rete. Una volta in possesso dei dati di pressione che definiscono la superficie piezometrica della rete minuto per minuto, sarebbe possibile effettuare, grazie alla moderna tecnica di telecontrollo, delle sofisticate elaborazioni come la compilazione in automatico di profili della linea piezometrica e del terreno secondo varie direzioni, effettuare complesse statistiche e controlli dei dati con emissione, sempre in automatico, di allarmi tutte le volte che vengono superati certi limiti ecc, ecc. Senza voler sminuire l’importanza di detti accorgimenti, nella presente nota si vuole proporre una tecnica completamente diversa che impone al personale di servizio di seguire personalmente l’evolversi della situazione del servizio idrico ma con una metodologia basata sul raffronto mnemonico e continuativo della superficie piezometrica allo scopo rappresentata graficamente con una simbologia semplificata atta ad essere facilmente memorizzata e seguita mentalmente di ora in ora e di giorno in giorno. Chi scrive ritiene che la gestione di un servizio così importante come quello idropotabile non possa affidarsi prevalentemente alla automatizzazione sia pur tenuto conto delle grandi possibilità di verifica multipla dei moderni sistemi centralizzati di telecomando e telecontrollo, ma che sia anche auspicabile che il personale di servizio sia chiamato a seguire costantemente il funzionamento reale del complesso acquedottistico. In questo senso, le modalità di cui alla presente nota costituiscono sicuramente un valido esempio.
Questa la proposta in dettaglio. Tenuto presente che, in caso di un qualsiasi disservizio, l’abbassamento misurato da ciascun manometro è tanto più rilevante quanto più il manometro stesso è vicino al punto in cui si verifica una anomalia, si comprende come dall’andamento delle curve di ugual pressione se ne possa dedurre anche l’ubicazione in quanto, con la citata rappresentazione planimetrica della superficie piezometrica, l’anomalia stessa si materializza con un cono di depressione il cui vertice ne rappresenta il baricentro.
La modalità per raggiungere lo scopo è quella illustrata, sia pure in modo schematico, nelle figure allegate, concernenti la rete di una grande città. 

Figura n. 1 = trete con consumi massimi

Nella fig. n. 1 è riportato lo schema semplificato delle maglie principali di condotte e, in sovrapposizione e con diversificazione di colori, le fasce di pressione sul suolo in un periodo di grande consumo dell’utenza. Nel prosieguo di tempo l’evoluzione planimetrica delle fasce colorate dell’immagine consentirà di seguire in maniera intuitiva l’andamento della pressione e quindi verificare la correttezza di funzionamento del sistema. Ad esempio nelle ore notturne la situazione normalmente diventa quella rappresentata nella figura 2 dove si nota una diminuzione ed una unificazione della pressione in tutto il territorio servito e data dalla minor pressione di immissione dell’acqua in rete da parte degli impianti di produzione e sollevamento e dalle diminuite perdite di carico della rete stessa dovuta ai più bassi consumi .

Figura 2 =  rete con consumi minimi notturni


La metodologia, oltre alla constatazione del regolare evolversi della pressione che si ha tutte le volte che le sue variazioni rientrano tra i limiti ben noti in quanto vi si ripetono giorno dopo giorno, fa risaltare in maniera molto evidente quelle di diverso tipo e causate da ogni possibile disservizio e, in tale malaugurata occasione, il personale di servizio ne prende immediata coscienza e può predisporre il pronto intervento e le manovre necessarie. Ad esempio nel caso di rottura di qualche condotta, ha luogo la depressione conica che, subito rilevata dai manometri e trasmessa automaticamente al centro, viene segnalata in rete con le modalità schematicamente riportate nella fig. 3 nella quale il vertice e quindi l’ubicazione della perdita è indicato dalla immagine circolare di colore più scuro.

Figura 3 = rete con un guasto in condotta

 

Da rilevare come il formarsi d una rottura molto spesso non avvenga repentinamente ma sia preceduta un fenomeno progressivo cui corrisponde una grafica che mette anzitempo in allarme il personale di controllo segnalandogli l’inizio e il continuo aggravarsi dell’anomalia e pertanto l’opportunità di mettersi in preallarme. Importante anche ricordare che non sempre le rotture sono evidenziate sul terreno dall’affioramento in superficie dell’acqua di perdita ma, in caso di terreni permeabili o di presenza di drenaggi sotterranei dovuti a tubazioni di vario tipo, l’acqua rimane nel sottosuolo e la rottura incognita. In questi casi una segnalazione come quella descritta esplica in pieno la sua utilità.

Figura 4 = rete con un impianto di produzione afunzionamnto ionsufficente


Un altro esempio riportato nella fig. 4 è quello di una cattivo funzionamento con diminuzione della portata immessa in rete da parte di uno dei due impianti di produzione. Le conseguenze indotte in rete sono evidenziate graficamente dal notevole spostamento planimetrico delle fasce di pressione più elevata e cioè di quelle di colore giallo e verde.
E’ importante confermare quanto già detto e cioè che la rappresentazione di cui si parla riguarda non la pressione assoluta della rete bensì quella relativa al terreno e quindi i concetti esposti sono validi per le reti che alimentano territori pianeggianti, come sono quelli delle figure allegate, ma anche per quelli collinari o montani: l’importante è che i dati oggetto della verifica si riferiscano, in ogni caso, alla pressione in condotta espressa in metri sul suolo. Ovviamente il sistema deve compilare anche una banca dati con raccolta ed archiviazione dei valori di pressione intervallati per  periodi brevi come ad esempio una mezz’ora in modo da rendere possibile, se necessario, il confronto di funzionamento della rete da una giornata all’altra.

Si è ben compreso come lo scopo della procedura che viene qui segnalata sia concentrato sulla rappresentazione grafica semplificata e continua della pressione di rete direttamente rapportata con le aree servite dalla rete acquedottistica cioè sulla conoscenza visiva ed in planimetria, sia pur semplificata ed approssimativa, del variare della pressione zona per zona e minuto per minuto. Ciò comporta notevoli vantaggi non solo nei casi segnalati di disservizi di varia natura ma anche nella normale gestione della rete grazie ad un sistema di comunicazione grafico che è percepibile in maniera molto più immediata di quanto potrebbe aversi da altre metodologie come ad esempio dalla consultazione di una serie di valori numerici od anche di profili longitudinali. Si elencano alcuni esempi significativi. E’ ben noto come si stiano diffondendo ovunque diverse tecniche di regolazione della pressione di funzionamento degli acquedotti basate sull’impiego di valvole di riduzione asservite all’impianto di telecomando, sulla sostituzione delle vasche di carico con sofisticati sistemi di immissione diretta in rete dell’acqua a pressione variabile, sulla distrettualizzazione ecc.ecc. essendo assodati i notevoli benefici che si ottengono in fatto di riduzione delle perdite, di guasto delle condotte e di risparmio energetico con la citata ed intelligente regolazione di pressione. Ebbene le modalità di segnalazione propugnate nella presente nota, consentiranno di tener agevolmente sotto controllo i risultati effettivi potendoli esaminare anche in momenti particolari come sono ad esempio quelli, anche se di breve durata, di consumo massimo dell’utenza oppure quelli di consumo minimo notturno. Anche l’adozione delle vasche di cacciata che effettuano ad intervalli regolari la pulizia tramite acqua potabile di certe condotte della fognatura, oppure l’interscambio di notevoli portate con altri acquedotti vicini, come anche l’apertura di scarichi per lavaggio della rete oppure la chiusura di condotte per lavori di manutenzione, tutte queste eventualità rappresentano momenti di normale esercizio acquedottistico nei quali la conoscenza della situazione planimetrica della pressione effettiva di rete offre un potente ed immediato mezzo di controllo.
Ed ora qualche dettaglio sulle caratteristiche di ciascuna postazione manometrica. Vista la natura dei segnali da trasmettere, sicuramente caratterizzati da una richiesta molto limitata di energia elettrica, si possono ragionevolmente prevedere delle postazioni standard che, evitando la proliferazione degli allacciamenti alla rete Enel, siano autoalimentate tramite pannelli fotovoltaici ed accumulatori nel mentre la trasmissione dei dati sia fatta via radio.

Infine si segnala che la metodologia proposta per la segnalazione grafica dell’andamento della superficie piezometrica, di per sè estremamente semplice, può essere resa visibile non solo nella sede centrale di controllo dell’esercizio ma, via internet e previa conoscenza di adatte password, in qualsiasi altra parte e quindi negli uffici periferici dell’Ente di gestione, nell’abitazione del personale che resta in preallarme in casa e perfino direttamente dal personale in servizio ed anche fuori servizio, tramite palmari individuali che siano in grado di ricevere internet.

 

3) CONCLUSIONI

A conclusione della nota si vuol far rilevare come a sofisticate procedure pratiche e teoriche di controllo del funzionamento degli acquedotto, quest’ultime svolte a tavolino e necessariamente in tempi diversi da quello in cui ha luogo una anomalia di funzionamento, sarebbe utile affiancare di fatto una procedura come quella descritta in queste righe e che si ritiene atta a segnalare tempestivamente ed in maniera evidente tutti i difetti di esercizio della rete non appena vengono alla luce. Nel caso specifico si propone una rappresentazione grafica della pressione in rete attuata con una simbologia molto semplice ed intuitiva che mette subito in risalto le anomalie ed anche la loro ubicazione planimetrica. Per raggiungere lo scopo è necessaria la presenza di un grande numero di manometri di rete il che comporta un notevole impegno di spesa ma che si ritiene costituisca comunque una buona regola di gestione che occorrerebbe in ogni caso adottare essendo accertata l’importanza basilare di avere sempre una buona conoscenza generale dell’esercizio reale degli acquedotti, nel mentre l’aver un mezzo per evidenziarla in maniera semplice ed intuitiva come quella proposta specificamente nella nota tramite le fasce colorate di uguale valore pressorio, si ritiene possa contribuire in maniera determinante ad un corretto esercizio dell’acquedotto ivi compresa una ottimale regolazione della pressione. A tutto questo vanno aggiunte le molteplici possibilità di prenderne conoscenza in tempo reale rese possibili dalla rete internet.

RAZIONALIZZAZIONE DELLA RETE DI DISTRIBUZIONE

1) INTRODUZIONE


Le reti di distribuzione d’acquedotto dei tipi classici più diffusi rappresentani lo scoopo del presente lavoro nel qiuale vengono documentate  le incongruenze di funzionamento  mentre nel contempo venmgono esaminate  la possibilità di ovviarvi con soluzioni razionali ed economiche.
Si assume come esempio una rete semplice (vedi fig.1) ma atta ad evidenziare i fenomeni che si vuole descrivere. In ossequio alle migliori tradizioni acquedottistiche e ai dettami della letteratura tecnica, essa presenta le seguenti caratteristiche:
· insieme di condotte a maglie chiuse e aperte estese a tutto il territorio da servire costituito da un nucleo centrale a maggior consumo, una periferia con consumi distribuiti e con alcuni utenti particolari (nodi 105,116,117 );
· alimentazione tramite un unico impianto di produzione e sollevamento a prevalenza fissa destinato ad immettere in rete la portata media giornaliera e munito di vasca di carico (S1) avente la funzione di stabilizzare la pressione di partenza della rete;
– compensazione delle portate effettuata a mezzo dei tre serbatoi pensili di rete (S2,S3,S4) (quindi acqua in quota) che accumulano durante i periodi di bassi consumi (presumibilmente la notte) i volumi d’acqua in eccedenza rispetto alle richieste dell’utenza per reimmetterli in condotta onde far fronte alle punte di consumo.

Schema rete di distribuzione con serbatoi pensili
Schema rete di distribuzione con serbatoi pensili

Una rete come quella descritta, secondo le opinioni maggiormente diffuse, costituisce l’optimum in quanto è in grado di garantire costanza e sicurezza di funzionamento assieme a stabilità della pressione di esercizio dovute alla presenza della vasca di carico in testa alla rete ed altresì economia nella spesa energetica di sollevamento dato che centrale e condotte principali recapitano con continuità la sola portata media evitando il funzionamento di punta che comporterebbe invece onerose dissipazioni energetiche.
Lunghe esperienze di attento esercizio hanno dimostrato che le cose si svolgono, nella realtà spesso incognita anche allo stesso gestore, in maniera totalmente diversa:
· nel mentre l’utenza proprio nei periodi di maggior consumo viene alimentata con le pressioni più basse a causa delle perdite di carico in tali evenienze particolarmente elevate, si verificano invece pressioni di consegna esuberanti durante i periodi notturni o comunque di basse portate cui consegue un duplice danno: quello dovuto all’ovvio dispendio energetico e quello dovuto alle perdite di rete che, a causa della maggior pressione, aumentano notevolmente.
I serbatoi di rete, essendo dimensionati per la punta di consumo, funzionano correttamente solo per periodi brevissimi mentre per la stragrande maggioranza delle giornate rimangono inattivi quando addirittura non sfiorano mandando a scarico importanti quantitativi d’acqua preziosa;

Come è ben noto, la portata che un serbatoio di rete come quelli in argomento può derivare o immettere in condotta è, in ogni istante, funzione di numerosi e variabili fattori tra cui la pressione di esercizio, quella di consegna all’utenza da cui dipende, in parte, il consumo, il livello dell’acqua nel serbatoio stesso che è funzione, a sua volta, dei volumi invasati o svasati in precedenza, ecc. ecc. Tale portata, pertanto, difficilmente viene a coincidere con quella necessaria per la compensazione delle portate, compensazione che viene quindi ed in buona parte a mancare.
Nella pratica gestione degli acquedotti, si rimedia maggiorando le condotte di rete in modo che gli impianti di produzione vi possano immettere, nelle ore di punta, una portata superiore a quella media prevista in origine e modulare la loro portata mediante dissipazione del carico idraulico ottenuta strozzando la valvola posta a valle della vasca di carico o facendo funzionare a canaletta le condotte in uscita dalla vasca stessa.
La diminuzione di pressione che tale operazione comporta nella rete, provoca il provvidenziale intervento dell’invaso ancora contenuto nei serbatoi.
Il risultato finale che così si ottiene è caratterizzato da:
· compensazione giornaliera delle portate effettuata solo in parte dai serbatoi di rete ed in parte dagli impianti di produzione;
· utilizzazione dei serbatoi a prezzo di una diminuzione della pressione di rete che a volte si rivela inadatta ad una corretta alimentazione dell’utenza;
· onerosa dissipazione di energia necessaria per abbassare la pressione di pompaggio subito a valle della vasca di carico.
· mancata utilizzazione della rete per il riempimento dei serbatoi nei periodi di bassi consumi. L’invaso viene invece effettuato durante i periodi di consumo medio quando le perdite di carico delle condotte sono ancora rilevanti.
In definitiva viene a mancare, per i serbatoi di compensazione in rete, l’assunto di base. Essi rimangono quasi sempre pieni mentre, nella migliore delle ipotesi, viene utilizzata solo una parte del loro volume utile, a prezzo di un funzionamento anomalo delle condotte di rete e degli impianti di
 produzione. Un altro fenomeno che ha luogo nei giorni di alto consumo dell’utenza è lo svuotamento anticipato dei serbatoi i quali, molto spesso, al momento della punta di consumo sono già vuoti e quindi non collaborano affatto a a soddisfarla.

 

2) VERIFICA DELLA RETE CLASSICA

 

Volendo verificare anche dal punto di vista teorico i concetti esposti, viene esaminata in dettaglio la rete di esempio: le conclusioni cui si perviene, confortanti quelle sperimentali, potranno, in un secondo tempo, essere estese anche a reti complesse.
Definito il diagramma giornaliero dei consumi dell’utenza del tipo che comunemente si può riscontrare in cittadine medie, si è passati alla verifica del funzionamento idraulico in moto permanente dell’insieme centrale di alimentazione/condotte/serbatoi.
Per i calcoli si è utilizzato un programma per personal computer che, oltre a consentire il calcolo della rete a maglie chiuse in un determinato istante tenuto conto della situazione degli impianti e dei consumi ai nodi nell’istante medesimo, permette anche di definire l’evoluzione nel tempo dei serbatoi ed in genere di tutta la rete, in funzione della variazione dei consumi dell’utenza secondo il citato diagramma di consumo giornaliero.


Si sono fissate le seguenti ipotesi di base:
1 – compensazione giornaliera delle portate effettuata dai serbatoi inseriti in rete (anche se in alcuni casi ciò non ha luogo che parzialmente)
2 – serbatoi a sezione costante
3 – serbatoi ad altezza infinita (le quote di minimo e massimo livello vengono determinate in un secondo tempo)
4 – esame della rete nell’intero arco della giornata tipo mediante serie di calcoli di verifica del suo funzionamento idraulico (moto permanente) per intervalli temporali brevi (15 minuti) in modo da rendere ininfluente, ai fini del calcolo del livello dei serbatoi, la differenziazione di portata entrante od uscente dai serbatoi stessi durante l’intervallo considerato.
5 – ripetizione delle serie di calcoli per almeno cinque giornate consecutive con identico diagramma di consumo dell’utenza in modo da raggiungere la stabilità del ciclo giornaliero sia per quanto riguarda i livelli dei serbatoi che la portata immessa in rete dalla centrale.
Nella prima serie di calcoli si sono ripetute le verifiche considerando diversi tipi di serbatoi in modo da esaminarne il comportamento in funzione della loro superficie utile. I risultati sono riportati nella seguente tabella I e nei grafici delle figure n. 2 e 3.

 

Esaminiamo il comportamento nel giorno di massimo consumo della rete alimentata dalla centrale o dal serbatoio a pressione o livello costanti (calcoli n. 1/I, 2/I 3/I, 4/I e figg. 2, 3).
Innanzitutto viene confermato che, essendo presenti serbatoi collegati alla rete senza interposizione di apparecchiature di sorta, non è possibile che la centrale immetta in rete una portata costante e di valore pari alla media giornaliera e che i serbatoi di rete, pur se di altezza infinita, abbiano da attuare la totale compensazione delle portate.
La inevitabile variazione di portata della centrale, pari a 290.2 l/s per serbatoi da 200 mq di sezione diventa sempre più’ piccola man mano che aumenta la sezione utile (è pari a 114.3 l/s per serbatoi da 1000 mq) e di conseguenza la curva rappresentativa della portata della centrale nelle 24 ore si appiattisce sempre di più’ avvicinandosi (senza mai eguagliarla) alla retta della portata media giornaliera.
Si constata come i serbatoi effettuino, trattandosi della giornata di massimo consumo, una buona compensazione del consumo di punta che alle ore 8-9 ammonta a 1350 l/s risultando sufficiente, per tale periodo, una portata della centrale prossima a quella media giornaliera (900 l/s). La portata della centrale raggiunge il valore massimo al pomeriggio quando i serbatoi sono vicini allo svuotamento totale e non, come a prima vista sembrerebbe logico, al mattino quando i consumi dell’utenza sono più elevati.
Il riempimento dei serbatoi ha luogo, in tutti i quattro casi esaminati, dalle ore 21 alle ore 6 circa quando essi raggiungono il loro livello massimo. Ha inizio allora la loro fase attiva con immissione in rete dell’acqua accumulata. Viene qui in luce una delle incongruenze del sistema in quanto il volume prezioso d’acqua in quota non viene, nel periodo di tempo che va dalla sei alle sette circa, utilizzato per coprire le punte di consumo, ma va invece ad alimentare una utenza avente consumi addirittura inferiori alla portata media e che, in quanto tali, potrebbero benissimo essere soddisfatti direttamente dalla centrale.
Per quanto concerne la funzionalità dei serbatoi risulta che, aumentando la loro superficie utile (da 200 a 1000 mq cadauno nell’esempio), si ottiene una miglior utilizzazione del volume disponibile il cui quantitativo passa dai 9100 mc con serbatoi da 200 mq a 10370 con serbatoio da 1000 mq, senza però raggiungere la cubatura necessaria per la totale compensazione che ammonterebbe a 11200 mc circa. Con la superficie maggiore (1000 mq) si ottiene, ovviamente, una minore escursione di livello di tutti i serbatoi e quindi anche della rete ed una minore escursione di portata tra mattina e sera nella centrale di sollevamento.
Esaminando il grafico (v. fig. 4) che rappresenta il volume utilizzato in funzione della superficie dei serbatoi si constata però come l’aumento di volume ottenibile dalla maggior sezione dei serbatoi non sia direttamente proporzionale alla superficie stessa ma segua una curva quadratica per cui i benefici ottenibili si attenuano all’aumentare della superficie. La soluzione ottimale dipende pertanto dalle caratteristiche proprie di ciascuna rete e dai costi di costruzione e di esercizio che le varie soluzioni comportano.

 

Le altezze utili che dovrebbero assumere i serbatoi nell’esempio sono esagerate sia per le difficoltà costruttive che ne deriverebbero sia per le eccessive escursioni di pressione che esse indurrebbero nella rete. Sono state scelte perché, trattandosi di una mera esercitazione teorica, rendono più evidenti i fenomeni che si vogliono qui illustrare.
Definite come sopra le caratteristiche geometriche dei serbatoi e supposto che siano dotati di valvola di efflusso a galleggiante che si chiude quando il serbatoio è pieno onde evitarne gli sfiori, si è passati all’esame del loro comportamento durante il resto dell’anno sempre considerando che la centrale di pompaggio funzioni a pressione costante (100 msm).
E’ in questa fase che vengono alla luce le più gravi carenze del sistema acquedottistico in esame. I serbatoi, dimensionati per un corretto funzionamento nel giorno di punta, diventano scarsamente utilizzabili in tutti gli altri giorni a causa delle minori perdite di carico che si verificano in rete.
Se si considera la curva di frequenza dei consumi medi giornalieri di un acquedotto tipo (vedi fig. 13.1 più avanti) dalla quale risulta che essi assumono valori elevati (normalmente utilizzati per il dimensionamento degli impianti) per pochissime giornate, e che pertanto i benefici ottenibili dai serbatoi nella misura sopra descritta si limitano a pochissimi casi mentre durante tutto il resto dell’anno la loro funzionalità è notevolmente ridotta, si può concludere che il sistema di alimentazione delle reti con centrali a pressione fissa deve essere abbandonato.

Ad esempio se si esaminano i risultati del calcolo n. 5/I riportati in tabella e nel grafico di fig. 5 e che sono relativi a serbatoi da 200 mq di sezione con quote di sfioro e fondo definite come sopra e ad un giorno nel quale gli utenti hanno un consumo corrispondente alla media annua (cioè con portata media giornaliera pari a 600 l/s) si constata come la pressione di rete sia per molte ore più elevata del livello massimo dei serbatoi i quali, durante tale periodo, rimangono chiusi e quindi inoperosi. Il contributo che essi prestano alla rete è limitato al periodo che và dalle ore 7 alle ore 11 durante il quale, immettendo in rete un volume totale di 1080 mc, riescono ad contenere la portata massima della centrale entro 763 l/s circa a fronte di un consumo istantaneo massimo dell’utenza di 900 l/s. L’accumulo di detto volume ha luogo nelle ore immediatamente successive e cioè dalle ore 11 alle 16 circa. Viene così a mancare totalmente la loro funzione precipua che dovrebbe essere quella di accumulare di notte i volumi d’acqua da restituire alla rete il giorno successivo. I serbatoi, la cui capacità totale è pari a 9280 mc, vengono utilizzati nella giornata di consumo corrispondente alla media annua, come già detto, per totali mc. 1080 corrispondenti ad una percentuale del solo 12%. Per quanto riguarda la pressione di consegna dell’acqua all’utenza si rileva come essa sia corretta solo durante i periodi di consumo elevato mentre per buona parte della giornata e per tutta la notte si verifichi un inutile carico residuo. Da tener presente che nei periodi notturni quando il consumo dell’utenza diventa quasi nullo ed i serbatoi sono pieni e quindi con la valvola di efflusso chiusa, la piezometrica di rete diventa quasi coincidente con la statica (100 msm) il che significa raddoppiare la pressione di consegna con tutti i danni che ne derivano. Se si tiene conto che i consumi per lunghi periodi si mantengono su valori ancora inferiori di quello medio annuo appena considerato, si giunge all’ovvia conclusione che, nella realtà, i serbatoi sopraelevati della rete alimentata a pressione fissa sono praticamente sempre pieni ed inutilizzati e che la pressione di consegna è quasi costantemente troppo elevata.
Prescindendo momentaneamente dalla reale consistenza della rete precedentemente descritta, si è passati a verificare quali sarebbero le sue condizioni di funzionamento qualora, soppressa idealmente la vasca di carico posta in testa, la centrale di sollevamento fosse del tipo ad immissione diretta in rete ed a portata costante per tutte le 24 ore della giornata. Tali modalità, che possiamo definire di tipo scolastico in quanto non attuabili nella pratica di esercizio, sono state esaminate al solo scopo di costituire la soluzione teorica ideale cui paragonare tutte le altre.

I risultati, relativi al giorno di max consumo e riportati in colonna n. 6/I

ed illustrati nel grafico di fig. n. 6, confermano che la centrale, per mantenere costante durante il corso della giornata la sua portata, dovrebbe variare notevolmente la pressione di pompaggio mentre i serbatoi, per poter effettuare tutta la compensazione, dovrebbero avere altezze utili di invaso maggiori di quelle determinate come sopra. Nel caso in esame si passa da un pompaggio massimo di 113,98 msm al mattino ad un minimo di 94,04 la sera mantenendo all’incirca un dislivello costante durante l’arco di tutta la giornata, rispetto ai livelli dei serbatoi.

Nella colonna 7/I nel grafico della fig. 7 sono riportati i risultati del calcolo di verifica nel giorno con consumi corrispondenti alla media annua (600 l/s) con centrale a portata fissa pari a 600 l/s e serbatoi da 200 mq che effettuano la compensazione delle portate. Il risultato più saliente è dato dal notevole abbassamento della prevalenza di pompaggio con una compensazione totale delle portate mediante utilizzazione di una capacità di 7464 mc.
Le conclusioni finali ricavate dalle serie di calcoli di verifica sopra riportati sono le seguenti:
· la rete classica, essendo dotata di vasca di carico che stabilizza la pressione di partenza ed essendo la quota di tale vasca definita in funzione delle portate di punta, lavora per lunghi periodi con valori di pressione di consegna dell’acqua inutilmente elevati il che comporta, oltre che un anomalo ed inutilmente dispendioso rifornimento idropotabile anche un aumento delle perdite notturne di rete con maggiori costi di produzione d’acqua;
· i serbatoi di compenso in rete sono per la maggior parte dell’anno scarsamente utilizzati costringendo la centrale ad immettere in rete portate quasi nulle durante la notte ed in genere i periodi di bassi consumi e maggiori della media giornaliera nelle ore di punta. Ne deriva necessità di maggiori diametri delle condotte di rete ed una loro anomala utilizzazione con maggiori perdite di carico ed ovvie maggiori spese di sollevamento.

 

3) LA RETE IDEALE

Nella ricerca di una soluzione atta ad ovviare ai difetti descritti si adotta una filosofia completamente diversa da quella che caratterizza la rete classica: attribuire priorità assoluta alla pressione di consegna dell’acqua all’utenza considerato che essa è l’elemento determinante dell’esercizio. Tutto il funzionamento dell’insieme acquedottistico sarà condizionato al raggiungimento di tale risultato. 
In pratica vengono prefissati valori di pressione all’utenza:
· elevati per il soddisfacimento del fabbisogno di punta;
· medi per i periodi di consumo medio bassi;
· minimi per le ore notturne caratterizzare da bassi consumi.
L’assetto degli impianti viene rivoluzionato: non più vasca di carico che fissa inderogabilmente la pressione di partenza ma centrale ad immissione diretta in rete e a pressione variabile con asservimento a quella finale dei nodi più rappresentativi della rete rilevata e trasmessa con continuità ed automaticamente alla centrale.
Anche i serbatoi di compenso in rete devono essere diversi da quelli descritti: non più serbatoi pensili che richiederebbero per il loro funzionamento una piezometrica di rete rigidamente definita dalle loro quote di fondo e di sfioro ma un grande serbatoio a terra munito di proprio impianto di risollevamento anch’esso a prevalenza variabile, il tutto adatto alle pressioni di esercizio le più disparate.
Tutti i sollevamenti devono ovviamente essere dotati delle apparecchiature (casse d’aria, casse d’acqua, alimentazione a mezzo by-pass ecc. ecc.) di attenuazione dei dannosi effetti dei colpi d’ariete che vengono inevitabilmente trasmessi alle condotte.

 

3.1) VERIFICA DELLA RETE IDEALE

La seguente serie di calcoli di verifica riguarda la rete di cui ai capitoli 1) e 2) alla quale sono però state apportate le modifiche necessarie per trasformarla in rete ideale.

Le sue caratteristiche sono:
· rete magliata unificata destinata sia all’alimentazione dell’utenza che a quella notturna del serbatoio di compenso;
· centrale di sollevamento con pompaggio diretto in rete a pressione e portata variabili (quindi con pompe a giri variabili) dotata di proprio serbatoio del tipo a terra e destinato a compensare la quasi totalità delle portate giornaliere. La pompa varia in continuazione la velocità di rotazione in modo che la pressione ai nodi rappresentativi della rete (nel caso specifico il nodo n. 118) coincida con quella del grafico preimpostato per tutta la giornata tipo e con un prefissato valore massimo di portata chiamato soglia di intervento. In altri termini la centrale, all’aumentare o diminuire della richiesta di rete, regola pressione e portata per seguirne il fabbisogno ma con una pregiudiziale data dal limite massimo di portata (soglia prefissata e tarabile) che non deve essere in nessun caso superato.
· serbatoio per la residua compensazione in rete ed a terra, ubicato in posizione baricentrica rispetto ai consumi, alimentato dalla stessa rete e munito di proprio impianto di risollevamento a portata e pressione variabili (quindi anch’esso con pompe a giri variabili). La regolazione del serbatoio ha luogo in fase di riempimento mediante modulazione della valvola di immissione con asservimento dell’invaso ad un grafico giornaliero preimpostato dei livelli in vasca da assumere ora per ora ed in fase di svuotamento con asservimento del numero di giri della pompa al grafico preimpostato della pressione ai nodi indicato al paragrafo precedente. Il risollevamento entra in funzione solo allorquando la pressione ai nodi, non più sorretta dalla centrale principale la cui portata ha raggiunto il valore di soglia, tende a scendere al di sotto dei valori preimpostati.
· impianto di telecontrollo e telecomando atto ad effettuare in automatico le regolazioni dei sollevamenti in funzione delle pressioni ai nodi rilevate e trasmesse in continuo, la regolazione dell’immissione d’acqua in serbatoio di compenso in funzione di una predefinita curva giornaliera dei livelli da assumere ora per ora ed in genere il controllo di funzionamento dell’insieme acquedottistico.
·
Poiché la rete che qui si vuol verificare riassume tutte le caratteristiche positive che con il presente lavoro si vogliono propugnare, ci si è dilungati nell’esaminare il suo funzionamento idraulico nelle varie e disparate condizioni paragonandone i risultati con quelli di una rete analoga ma di tipo tradizionale con serbatoi pensili di compensazione ed impianto di produzione funzionante a portata fissa pari a quella media giornaliera. Il confronto è quindi effettuato con un sistema acquedottistico di tipo classico avente il minore dispendio energetico possibile anche se, come spiegato, non attuabile nella realtà dell’esercizio. Per consentire anche un raffronto realistico dei consumi energetici si sono indicati nelle colonne 9/II e 10/II i dati di funzionamento relativi ad un acquedotto di tipo tradizionale identico a quello classico suddetto ma dotato, come di norma, di una centrale di pompaggio a pressione fissa e pari a quella massima necessaria per l’ora di punta e con regolazione della pressione di mandata ottenuta strozzando la valvola di uscita e quindi dissipando il carico in eccesso.
La serie di calcoli è riepilogata nella tabella II, mentre la loro rappresentazione grafica forma l’oggetto delle fig. da n. 9 a n. 12. Nella tabella sono replicati nelle colonne n. 1/II e n. 6/II i dati delle col. 6/I e 7/I già esaminate per facilitare il confronto dei risultati.

Per una visione completa del funzionamento della rete vengono esaminate molte possibilità di utilizzazione della capacità di compenso giornaliero del suo serbatoio: da quella minima (nessun volume di compenso da parte del serbatoio di rete) a quella massima con immissione in rete dell’intero volume utile e quindi con totale compensazione della portata da parte del serbatoio.
Tra i due estremi esistono infinite possibilità intermedie definite dalla soglia di pompaggio massimo che si può preimpostare.
Le prime verifiche riguardano l’ipotesi in cui tutta l’utenza è alimentata dalla centrale costretta, in tal caso, a seguire le portate richieste dalla stessa
Nella pratica tale funzionamento sarebbe ottenuto fissando un valore di soglia più elevato della portata massima degli utenti cioè superiore a 1350 l/s.
I risultati sono riportati nella allegata tabella II.

Schema rete di distribuzione con serbatoio a terra
Schema rete di distribuzione con serbatoio a terra

Nel giorno di massimo consumo (n. 2/II fig. 9) la centrale varia la pressione di pompaggio fino a raggiungere, nell’ora di punta, i 137 msm circa. Il bilancio energetico denuncia un dispendio superiore a quello con serbatoi pensili del 5% (v. n. 1/II fig. 6) e rilevanti perdite di carico che la rete deve sopportare per il trasporto delle portate di punta. Nei giorni di consumo medio (600 l/s v. col. 8/II fig. 12) la pressione massima di pompaggio si abbassa fino a 100 msm con un dispendio energetico pari a quello che si avrebbe con la corrispondente soluzione con serbatoi pensili (v. n. 6/II fig. 7).
Da quanto precede risulta che per portate rilevanti è conveniente utilizzare al massimo i serbatoi di rete e diminuire quindi la portata innalzata dalla centrale durante le ore di punta mentre per i consumi medio-bassi la soluzione migliore è quella con l’intera portata sollevata direttamente dalla centrale evitando totalmente il risollevamento da parte del serbatoio in rete.

E’ fuori di dubbio che la soluzione più razionale non può essere che quella mista che soddisfa ambedue le condizioni e quindi con serbatoi in rete che intervengono solo quando la portata totale (cioè il consumo dell’utenza) supera una certa soglia critica. Quando ciò non avviene tutta la portata è sollevata dal solo impianto di produzione (regolazione “a soglia prefissata”).
Visto il funzionamento della rete senza intervento dei serbatoi si passa ora ad esaminare l’efficacia di quest’ultimi iniziando con modesti volumi di utilizzazione per passare via via a più marcati valori fino a giungere alla utilizzazione del volume massimo di compensazione. Nella pratica tale regolazione avviene fissando via via valori sempre inferiori di soglia fino a giungere al suo valore minimo cioè pari alla portata media del giorno di massimo consumo, nell’esempio 900 l/s.
Soluzione con soglia prefissata a 1120 l/s (v. n. 3/II fig. 10).

 

 

 

La centrale segue le richieste dell’utenza per portate inferiori o pari a 1120 l/s mentre il serbatoio rimane pieno. Quando tale valore viene superato, la centrale mantiene la sua portata sempre al valore di soglia (1120 l/s ottenuto variando in continuazione la pressione di pompaggio) mentre ha inizio lo svuotamento del serbatoio di compenso che, tramite risollevamento, immette in rete tutte le portate di inte

grazione necessarie per coprire il fabbisogno di punta dell’utenza.

Nel giorno di massimo consumo l’intervento complessivo del serbatoio è minimo e cioè pari a soli mc 1600 ma consente di abbassare la pressione massima di pompaggio portandola a 119 msm contro i 137 msm che si avrebbero senza di esso (v. fig. n. 9 precedente). Si vede come la sua utilizzazione, anche se modesta, permette di ottenere un notevole beneficio nella pressione di esercizio riportandola entro valori appropriati. Per quanto riguarda invece i consumi energetici non si ottiene alcun beneficio rispetto alla soluzione precedente (stesso dispendio energetico dovuto alla necessità di dissipare il carico durante il riempimento del serbatoio e di risollevare durante le ore di punta l’acqua precedentemente accumulata nel serbatoio).

In tutti gli altri giorni il consumo energetico migliora. Ad esempio nel giorno di consumi medi (v. n. 8/II fig. 12) esso è pari alla soluzione con serbatoi pensili (v. n. 6/II fig. 7) e quindi estremamente contenuto.
Si esamina ora il funzionamento della rete con una soglia massima di funzionamento della centrale fissata a 1000 l/s. L’intervento del serbatoio, nel giorno di massimo consumo, comincia a diventare importante (mc. 5930) mentre la centrale limita la sua portata ai 1000 l/s di soglia (v.n. 4/II). Rispetto alla soluzione con serbatoi pensili si ottiene una maggior impiego di energia pari soltanto all’uno per cento.
Il più marcato intervento del serbatoio provoca un appiattimento della pressione di pompaggio che, nel giorno di consumo max (v. n. 4/II), varia da un massimo di 111 msm ad un minimo di 76 msm. Nel giorno di consumo medio ( funzionamento identico a quello sopra esaminato v. n. 8/II fig. 12 ) la pressione di pompaggio, pur non verificandosi alcun intervento del serbatoio di compenso, si abbassa ulteriormente rientrando tra un massimo di 100 msm raggiunti per un breve periodo alle ore 9 circa ed un minimo di 62 msm durante le ore notturne.
Passiamo all’esame del funzionamento con una soglia prefissata pari alla media del giorno di massimo consumo. E’ questa la regolazione ottimale degli impianti in quanto consente, a parità di alimentazione dell’utenza, la maggior economia di energia di sollevamento. Il dispendio energetico è addirittura inferiore a quello della soluzione (non attuabile nella realtà) con serbatoi pensili e centrale di sollevamento portata costante per tutta la giornata.
Infatti durante tutte le 24 ore del giorno di massimo consumo la centrale solleva la portata media (nell’esempio 900 l/s) e pertanto la rete può effettuare il trasporto dei necessari volumi d’acqua con le perdite di carico minime (v. n. 5/II fig 11). Tutta la capacità utile del serbatoio viene utilizzata per effettuare la totale compensazione giornaliera delle portate. La pressione di pompaggio della centrale principale è quasi livellata essendo di giorno pari a 102-105 msm e di notte a 87 msm circa. Il serbatoio di compenso, tramite il suo impianto di pompaggio, risolleva un volume di 11200 mc ad una pressione massima di 103 msm per un breve periodo alle ore 9 e poi a circa 78 msm dalle ore 10 alle 20 circa. La rete viene utilizzata anche durante la notte per addurre, oltre alla portata richiesta dall’utenza, anche il volume d’acqua da accumulare nel serbatoio.
Nel giorno di consumo medio (600 l/s) si ha lo stesso funzionamento dei casi precedenti con la centrale principale che immette da sola tutta la portata non essendo mai superata la soglia preimpostata di 900 l/s e ciò ha luogo con una pressione variabile da 100 a 62 msm (v. n. 8/II fig. 12).
Risultato finale della regolazione in esame (soglia pari alla media giornaliera) è un consumo energetico nelle 24 ore estremamente contenuto essendo pari a quello che si avrebbe con rete dotata di serbatoi pensili.
Per dimostrare come tale risultato nella reale gestione sia veramente interessante, si sono tracciati i grafici di funzionamento giornaliero dell’ acquedotto di cui alle verifiche precedenti nelle varie giornate dell’anno tipo. Sono state scelte quattro giornate con portate gradualmente decrescenti di 100 l/s da quella di consumo massimo (900 l/s), a quella di consumo corrispondente alla media annua (600 l/s). Si è supposto, come consigliato sopra, di mantenere fissa e pari alla media del giorno di consumo massimo (900 l/s) in ogni condizione di esercizio e di consumo giornaliero la soglia di pompaggio dell’impianto principale determinando il volume di utilizzazione del serbatoio di rete nei vari casi.
I dati di funzionamento possono essere così riassunti:

 

 portata media l/s  coeff vol.utilizz.  serbat. mc  %  frequenza giorni
 900  1,50  11200  100  1
 800  1,33  4800  41   20
 700  1,17   1000  9   37
 600  1,00  0  0  182

Riportando i dati in grafico (v. fig. 13 parte sinistra) si constata come la percentuale di utilizzazione del serbatoio di rete, massima per il giorno di consumo elevato (corrispondente a 1.5 volte quello medio annuo) nel quale viene utilizzato per la compensazione tutto il volume di invaso (punto a), decresce rapidamente fino ad un valore pari a solo il 10% circa di tale volume per consumi pari a 1.2 volte quello medio (punto c) e per azzerarsi quando i consumi corrispondono al consumo medio annuo (punto d). Per consumi ancora inferiori non si ha alcuna utilizzazione del serbatoio. I dati, integrati da quelli di frequenza statistica media annua dei consumi conducono a risultati veramente strabilianti. La curva rappresentativa delle percentuali di utilizzazione del serbatoio (v. fig.13 parte destra) ha un andamento quasi parallelo e molto vicino agli assi con accentuato punto di flesso ubicato in corrispondenza dei 35 giorni dell’anno a consumo più elevato. Se ne deduce che per una metà dell’anno l’utilizzazione del serbatoio è nulla, per altri 148 giorni circa essa rimane bassissima mentre le alte percentuali sono tutte concentrate nei rimanenti 35 giorni durante i quali, essendo superato il punto di flesso, passa dal 10% al 100%. L’intervento sostanziale del serbatoio di compenso in rete è, quindi, limitato mediamente a sole 35 giornate all’anno mentre per circa le 330 giornate rimanenti i consumi avranno un valore pari o inferiori a 1.17 volte la media giornaliera annua ed il serbatoio sarà utilizzato per soli 1000 mc. pari al 9% del volume totale, oppure per volumi ancora inferiori.
Se nel diagramma citato si considera l’area indicata con tratteggio e compresa tra gli assi fondamentali e la curva delle percentuali di utilizzazione del serbatoio, e che rappresenta l’utilizzazione totale annua del serbatoio, si vede come essa corrisponda appena al 6% della utilizzazione massima del serbatoio stesso (100% per 365 giorni).
Per far risaltare il risparmio energetico offerto dalla soluzione a soglia ottimale (900 l/s) si è anche verificato quale sarebbero i risultati ottenibili modificando la soglia fino a farla coincidere di giorno in giorno con la portata media del giorno medesimo. A prima vista sembrerebbe questa la soluzione ideale in quanto, in tale ipotesi, la rete dovrebbe effettuare, in ogni giornata tipo, il trasporto delle sole portate medie lasciando al serbatoio il compito di integrare la portata immessa in rete per coprire le punte di consumo. Si riscontra invece un peggioramento della situazione con consumi energetici che, ad esempio nella giornata di consumo medio (v. n. 7/II ) e cioè 600 l/s superano del 3% quelli ottenibili con la soglia elevata (v. n. 8/II fig. 12). Risultati ancora peggiori si riscontrerebbero, ovviamente, nelle giornate di consumo inferiore che, come più volte citato, si verificano con grande frequenza durante l’anno.
Come indicato i raffronti energetici sono effettuati con un acquedotto di tipo tradizionale munito di serbatoi pensili di compenso e con un funzionamento puramente ipotetico della centrale principale considerata come atta a sollevare ed immettere in rete, in tutti i casi in esame, la portata media giornaliera variando con continuità la propria pressione di pompaggio (colonna n. 1/II fig. 6). La realtà è ben lontana da tale ipotesi semplificativa essendo gli acquedotti classici dotati, nella maggior parte dei casi, di vasca di carico in testa alla rete e, come tali, da considerarsi a pressione di pompaggio fissa. Nelle colonne 9/II e 10/II si sono riportati anche i dati di funzionamento di un acquedotto di questo tipo mettendo in rilievo gli inconvenienti che esso presenta.
In pratica si è supposto di modificare lo schema acquedottistico della colonna n. 1/II sostituendo la centrale a pressione variabile con una a pressione fissa per qualunque condizione di esercizio. La quota di pompaggio e quindi l’ubicazione altimetrica della vasca di carico, definite dal funzionamento critico della rete e cioè dell’ora di punta, risultano pari a 114 msm e di conseguenza la pressione di esercizio, adeguata nel brevissimo periodo di richiesta massima dell’utenza (ora di punta) e solo in quello, diventa sovrabbondante per tutto il tempo rimanente durante il quale l’inutile carico residuo deve, per consentire il funzionamento dei serbatoi di rete, venir dissipato o mediante regolazione della valvola posta al piede della vasca o mediante funzionamento a canaletta della prima parte della tubazione di uscita dalla stessa con tutti gli inconvenienti che derivano dall’immissione di aria in condotta. Questo fatto si traduce in un notevole dispendio energetico che, nell’esempio di tabella, raggiunge il 10% nel giorno di consumo massimo e ben il 42% in quello di consumo medio per essere ancora percentualmente più elevato nei giorni di consumo ancora inferiore.
L’immagine del tutto positiva che si aveva dell’acquedotto tradizionale con la sua vasca di carico che garantisce e stabilizza la pressione di partenza di tutta la rete, con i serbatoi pensili di rete che con i loro grandi volumi d’acqua in quota garantiscono la corretta alimentazione dell’utenza in ogni condizione di esercizio, esce malconcia dalla serie di risultati che precedono. Si tratta, nella realtà spesso incognita, di una rete inutilmente sovradimesionata che, in quanto tale, deve dissipare continuamente l’esuberanza di carico. In alcuni acquedotti, per evitare tale dissipazione, si mantiene, anche durante i periodi di bassi consumi, tutta la pressione data dalla vasca di carico con la logica conseguenza che i serbatoi, fatta eccezione per le giornate di consumo massimo, rimangono sempre pieni o quasi pieni e quindi ha luogo, durante tali periodi, una spesa energetica ancora maggiore cui si aggiunge l’ulteriore inconveniente di una eccessiva e dannosa pressione in rete (la pressione si avvicina all’idrostatica). La realtà è molto spesso ancora peggiore: la pressione non raggiunge tali massimi per il semplice motivo che di notte l’aumento della pressione di rete fa crescere vertiginosamente le fughe d’acqua dovute alle piccole rotture fino a farle raggiungere volumi così elevati (l’acqua dissipata annualmente nel terreno può superare il 50% del totale prodotto!) che anche durante tale periodo la portata d’acqua immessa in rete si mantiene elevata.
Risultano evidenti i vantaggi che presenta la rete ideale propugnata nel presente lavoro. Si ribadisce quì che essa garantisce una adeguata pressione di consegna dell’acqua all’utenza in ogni condizione di esercizio. Ciò significa che nei periodi critici, come ad esempio l’ora di punta del giorno di massimo consumo, anche gli utenti più lontani sono alimentati con pressione adeguata mentre nei periodi di bassi consumi come possono essere quelli notturni delle basse stagioni viene abbassata la pressione di consegna evitando in tal modo inutili e costose sovrappressioni fonte, oltre che di dispendio energetico, di maggiori perdite i rete. Si può affermare che la differenza sostanziale fra le reti classica e quella ideale consiste nel fatto che la prima è composta da un sistema rigido la cui gestione è strettamente vincolata alle sue caratteristiche costruttive e soltanto a quelle. Come tale, deve sempre funzionare alla sua massima potenzialità con tutti gli inconvenienti che ne conseguono: dispendio energetico, frequente ed inutile esuberanza di carico idraulico, impossibilità di adeguarsi a maggiori ed imprevedibili richieste dell’utenza se non tramite esecuzione di nuove opere. La gestione della rete ideale, al contrario, è estremamente elastica essendo funzione diretta dell’utenza e dei suoi fabbisogni di cui può seguire puntualmente tutte le variazioni con la massima economia energetica di sollevamento garantendo, al tempo stesso, una pressione di consegna sempre ottimale. E’ possibile far fronte alle eventuali maggiori ed imprevedibili richieste senza esecuzione di nuove opere ma semplicemente con una maggiore spesa energetica di sollevamento.
Esaurito l’esame del comportamento generale della rete ideale si è evidenziato il suo funzionamento nei momenti salienti delle giornate di massimo consumo ed in quella di consumo medio annuo riportando sugli schemi planimetrici (che per brevità si omettono) i risultati dei calcoli di verifica e ricavando da essi il profilo idraulico nelle varie condizioni di funzionamento (v. fig. n. 14) da cui si possono trarre, a conferma dei concetti esposti sopra, importanti conclusioni.

Si nota innanzitutto come le forti escursioni della pressione di partenza che si verificano passando da una condizione all’altra, non provocano alcun inconveniente all’utenza in quanto non interessano la rete di distribuzione vera e propria ma solo il suo primo tratto (nodi 1 – 101) nel quale non ci sono prelievi. Si tratta, nell’esempio e molto spesso anche nella realtà, di una condotta singola di collegamento della rete magliata con l’impianto di produzione posto fuori del centro da servire e che, come tale, per portate di una certa entità necessita di notevoli carichi idraulici. D’altro canto non conviene abbondare eccessivamente nel dimensionamento di tale tubazione considerato che i periodi di portata elevata sono statisticamente poco frequenti e che pertanto, come risulta anche dai conteggi sopra riportati, il consumo energetico annuo risulta comunque contenuto.
La rete magliata, al contrario, conferma le sue ottime caratteristiche effettuando il trasporto di grandi portate d’acqua con modeste perdite di carico e quindi senza grandi variazioni della pressione di consegna. La centrale funziona alla massima pressione manometrica (100-105 msm) soltanto nei momenti di effettivo bisogno quali sono ad esempio, nel giorno di consumo massimo il periodo che va dal consumo medio giornaliero (900 l/s) a quello di punta (1350 l/s) e nel giorno di consumo medio annuo, la sola ora di punta (900 l/s). Durante tutti gli altri periodi, ivi compreso anche quello di riempimento del serbatoio nel giorno di consumo massimo, la centrale è in grado di far fronte ai fabbisogni con una pressione media e medio-bassa.
In particolare per consumi pari circa alla media annua (600 l/s) ed anche per il riempimento notturno del serbatoio nei giorni di massimo consumo, è sufficiente una pressione di pompaggio di 80-85 msm mentre per tutti i periodi di bassi consumi notturni la pressione si abbassa fino a circa 65 msm. Tutto ciò si traduce in evidenti economie nell’energia consumata annualmente per il sollevamento.
Nel territorio abitato le pressioni sono livellate essendo concentrate, in tutti i casi esaminati, compresi quelli estremi, in due fasce (v. zone tratteggiate nella fig. 14): quella del funzionamento diurno nella quale di ha una pressione assoluta massima di msm 84 ed una minima di 70 msm., quella del funzionamento notturno con pressione da m. 52 a m. 65. La pressione di consegna nel nodo 118, assunto come rappresentativo della rete, è di m 70 di giorno e m. 60 di notte come da diagramma prefissato.
Per quanto riguarda il funzionamento delle condotte di rete, dall’esame dei risultati dei calcoli, si è rilevato come tutti i tronchi concorrano solidalmente al trasporto dei richiesti volumi d’acqua che pertanto ha luogo, in ogni condizione di funzionamento, con perdite di carico estremamente contenute. Ciò si evidenzia particolarmente durante la notte del giorno di max consumo quando, con consumi quasi nulli dell’utenza e con il serbatoio di rete in fase di riempimento, anche le condotte più lontane dalla centrale, invertendo la direzione di moto dell’acqua, riescono ad addurre, nonostante la loro ubicazione idraulicamente sfavorevole, notevoli volumi d’acqua al serbatoio stesso.
In definitiva si può affermare che, nella rete dell’esempio, il carico idraulico disponibile viene sempre utilizzato in modo ottimale, con perdite di carico contenute e non senza garantire una corretta consegna dell’acqua all’utenza.

 

3.2) LA SCELTA DELLE POMPE

Nei grafici relativi al funzionamento della rete ideale nelle varie giornate tipo e secondo tutte le modalità di funzionamento possibili, alcune delle quali formano oggetto delle fig. da n. 9 a n. 12 mentre altre non sono riportate nel presente testo, si sono evidenziati con un circoletto numerato i punti salienti di sollevamento dell’impianto principale che, riportati sul grafico cartesiano di fig. n. 15, hanno consentito di definire, con un congruo margine di sicurezza, la fascia caratteristica del pompaggio.

Pur non escludendo la possibilità di realizzare la stazione di pompaggio con una serie di pompe a velocità fissa al fine di raggiungere buoni risultati con costi più contenuti, dal grafico risulta che la soluzione ottimale sarebbe quella con pompe a velocità variabile più adatte a cop

rire interamente l’area di lavoro. Si noterà come la fascia sia caratterizzata da una minor pendenza e larghezza nella parte bassa del grafico il che ha consigliato di dividere il campo in due parti ben definite ed indicate in disegno con diverso tratteggio. Sono state quindi scelte due pompe a velocità variabile dimostratesi atte a coprire, con buone caratteristiche funzionali, tutto il campo di lavoro.
Quella più piccola con portata variabile da 150 a 600 l/s circa e prevalenza da circa 35 m a 55 m. resta in funzione per un tempo pari a circa il 40% del totale annuo tale essendo la percentuale statistica di frequenza delle portate orarie pari o inferiori alla media annua.
L’altra pompa avente portata, a basso numero di giri, pari a 600 l/s e, alla velocità massima, 1300 l/s circa con una prevalenza da 55 a 115 m circa farà fronte, oltre che al riempimento notturno dei serbatoi di compenso, anche ai rimanenti fabbisogni dell’utenza.
Si fa notare come le apparecchiature di sollevamento descritte consentano di soddisfare i fabbisogni della rete in tutte le più disparate condizioni anche in quelle improbabili ma pur sempre possibili. Per la definizione della fascia di lavoro delle pompe, sono stati infatti utilizzati grafici di funzionamento relativi ai giorni di consumo massimo, medio e minimo considerando per ognuno di essi vari modi di sfruttamento della capacità di compenso dei serbatoi che vanno dall’utilizzazione dell’intero volume di invaso fino ad una utilizzazione nulla. Le pompe scelte e la rete esaminata saranno quindi in grado di far fronte, a prezzo soltanto di una maggior spesa energetica, anche a situazioni eccezionali quali sono, ad esempio, il fuori servizio del serbatoio di compenso nel giorno e nell’ora di punta.

 

4) CONCLUSIONI

Il lavoro svolto riguarda la razionalizzazione di una rete elementare di costituzione molto semplice in quanto ritenuta sufficiente a comprovarne la validità. Le metodologie proposte allo scopo sono però applicabili, con buoni risultati, anche a reti complesse quali sono, ad esempio, quelle dotate di più impianti di produzione, quelle alimentanti territori variegati sia dal punto di vista altimetrico che da quello dei consumi specifici nelle quali si avrà cura di asservire ogni centrale di sollevamento o di risollevamento ai nodi della sottorete di appartenenza. Si potrà, anche allora, constatare come il funzionamento a pressione di esercizio variabile e la grande elasticità di funzionamento propri della “rete ideale” si prestino ottimamente a risolvere problemi anche ardui in una costante ottica di contenimento dei costi energetici.
Alcuni esempi: nel caso di reti alimentate con fonti diversificate sia per ubicazione che per qualità (acqua potabilizzata e acqua naturalmente potabile), si potrà abbassare il costo medio di produzione facendo funzionare alla sua massima producibilità 24 ore su 24 l’impianto che ha costi di produzione inferiori; nel caso di reti sottodimensionate si potrà rimediare aumentando la pressione diurna di esercizio; nei periodi o nelle aree caratterizzate da deficienza delle fonti si potrà economizzare mediante alimentazione ad una pressione il più bassa possibile ecc. ecc..
I concetti di base da cui trova origine tutta l’impostazione progettuale e di esercizio qui propugnata possono essere così riepilogati:
· il pompaggio a pressione variabile che comporta la messa al bando dei serbatoi pensili ma consente la massima elasticità ed economicità di esercizio;
· le modalità di compensazione giornaliera delle portate da effettuarsi per la maggior parte con serbatoi a terra annessi alla produzione e, per la parte restante, con serbatoi a terra ubicati in posizione baricentrica dell’utenza;
· le modalità di pompaggio a soglia preimpostata;
· la preimpostazione delle pressioni che durante la giornata devono essere assicurate nei vari punti della rete;
· l’utilizzazione della rete sia per l’adduzione dei volumi d’acqua ai serbatoi di compenso in rete sia per la distribuzione agli utenti;
· il telecomando e telecontrollo della rete a mezzo impianto automatico.

Le soluzioni proposte consentono:
1) Rilevanti economie sia costruttive che di gestione dell’insieme acquedottistico;
2) La possibilità di far fronte ad imprevedibili necessità grazie alle grandi doti di elasticità possedute dalla rete;
3) La razionale utilizzazione dei volumi d’acqua accumulati nei serbatoi sia nei giorni di punta, sia in quelli di portata minima e sia per far fronte ad impreviste necessità:
4) di graduare le pressioni di rete in funzione delle effettive necessità dell’utenza garantendo in ogni condizione di esercizio la consegna dell’acqua alla pressione adeguata.

In definitiva l’ esercizio delle reti e dei relativi impianti condotto secondo le modalità descritte nel presente lavoro costituisce un modo corretto, razionale ed economico di gestione.
Chi scrive ha potuto verificare tali risultati nell’esercizio di più acquedotti che, pur essendo dotati di apparecchiature di regolazione meno sofisticate di quelle necessarie per la rete ideale citata, funzionano automaticamente a pressione variabile asservita alle richieste di rete da oltre vent’anni.
Caratteristica saliente un sollevamento che, pur garantendo una pressione di consegna all’utenza sempre ottimale, si è svolto per la quasi totalità delle ore di funzionamento di tutto il ventennio a bassa pressione essendo quello ad alta limitato a periodi brevissimi: è evidente l’economia realizzata nella spesa di sollevamento.
Un’altra esperienza che si è potuta fare è quella relativa ai vantaggi offerti dalla riduzione della pressione notturna di pompaggio. A tale scopo si è, durante la notte, forzatamente alimentata la rete a pressioni maggiori di quelle normali constatando come le portate minime immesse in rete (costituite in tal caso quasi esclusivamente da perdite di rete) subissero, per effetto dell’aumento di pressione (da 20 a 45 m.), un incremento corrispondente circa al raddoppio di valore.
Come già detto tutte le soluzioni proposte nel presente lavoro riguardano acquedotti di medie dimensioni. Certamente i grandi sistemi acquedottistici richiedono tecnologie migliori. Si tratterà ad esempio di più sofisticate procedure di calcolo per l’ottimizzazione in continuo della produzione, accumulo, pompaggio e trasporto dell’acqua, di nuove metodologie di determinazione della pressione ottimale di consegna all’utenza, di verifica e localizzazione in automatico delle perdite di rete e di verifica automatica del funzionamento idraulico dell’insieme acquedottistico. Su alcuni punti però troveranno conferma, senza tema di smentita, le tecniche qui proposte: nel funzionamento a pressione variabile degli impianti, nella parziale compensazione giornaliera delle portate da effettuarsi in rete mediante serbatoi a terra, nell’utilizzazione della rete sia per l’adduzione che per la distribuzione dell’acqua ed infine sull’importanza che riveste l’impianto di telecontrollo e telecomando della rete.
Ciò è dovuto ad alcune delle prerogative insite nella natura stessa delle reti, nelle leggi che ne regolano il funzionamento idraulico ed infine nelle usuali modalità di consumo dell’utenza, prerogative di cui, con il progredire della tecnica, non si potrà trascurare lo sfruttamento.
Merito del presente lavoro si ritiene sia quello di averne messo in luce, enfatizzato e documentato con esempio di verifica teorica le caratteristiche.
Merito ulteriore, anche se di minor rilievo, quello di contribuire affinché nella città futura non siano presenti gli ingombranti ed antiestetici serbatoi pensili messi al bando dalla diversa tecnologia quì proposta.

 

INDIETRO

AVANTI