LA RAZIONALIZZAZIONE DELLE RETI DI DISTRIBUZIONE D’ACQUA POTABILE A SOLLEVAMENTO MECCANICO SECONDO ESEMPIO PRATICO

 

La pressione regolata

1. PREMESSA

Nell’ordine dal basso: Il serbatoio di compenso a terra, la centrale di sollevamento a pressione variabile, il serbatoio pensile di Sacile

Tra gli impianti acquedottistici meritevoli di essere segnalati per le caratteristiche tecniche conformi ai suggerimenti contenuti nei vari articoli del presente sito, figura senz’altro l’acquedotto di Sacile in provincia di Pordenone, alimentante una popolazione di circa 20.000 abitanti.
Chi scrive questa nota ha lungamente collaborato alla progettazione, costruzione e soprattutto gestione dell’acquedotto in parola ma, non essendo in possesso di alcuna copia dei documenti ufficiali, deve fidare, nella descrizione, solo sul ricordo del lavoro svolto. Alcuni degli elementi di seguito riportati potranno pertanto differire da quelli reali senza però che venga per questo sminuita la validità del lavoro essendo pienamente rispettati i concetti di base della costruzione acquedottistica che sono quelli interessanti ai fini che qui ci si propone.

 

2. CARATTERISTICHE GENERALI

L’acquedotto era, in origine, costituito da:
– Opere di presa comprendenti i tre campi acquiferi di Saccon, Picol e Talmasson ognuno dei quali collegato alla centrale di S. Liberale tramite propria condotta di adduzione della lunghezza di circa 5 Km e funzionante a gravità essendo posto a quota altimetrica elevata rispetto alla centrale stessa;
– Centrale di S.Liberale ubicata in testa alla rete di distribuzione e comprendente un serbatoio a terra di raccolta e compensazione delle portate in arrivo dai pozzi, un impianto di sollevamento ed un serbatoio pensile posti sopra il serbatoio a terra;
– la rete di distribuzione a maglie chiuse estesa a tutto il territorio da servire ed alimentata dal serbatoio pensile nel quale erano installati i galleggianti di comando delle pompe.

Il notevole incremento edilizio che ha interessato Sacile a partire dagli anni 60 ha comportato la totale revisione degli impianti acquedottistici divenuti assolutamente insufficienti all’alimentazione della accresciuta popolazione. Il potenziamento ha riguardato l’intero assetto dalle fonti, alla centrale di S.Liberale totalmente cambiata sia nella potenzialità che nelle modalità di esercizio ed infine alla rete di distribuzione in cui sono stati inseriti nuovi importanti anelli idrici di grosse tubazioni. Il tutto come sarà di seguito indicato.

 

3. IL POTENZIAMENTO DELLE FONTI

I tre campi acquiferi erano stati in grado, per un lungo periodo, di alimentare direttamente a gravità, e cioè sfruttando il dislivello topografico esistente tra zona pozzi e serbatoio a terra di S. Liberale, la cittadina allora molto meno popolata di oggi. Il citato incremento di popolazione, l’aumento dei consumi specifici e la contemporanea diminuzione di portata accusata dai pozzi a seguito dei numerosi prelievi effettuati da terzi nella stessa falda artesiana, hanno richiesto un notevole potenziamento realizzato mediante installazione di pompe sommerse in quasi tutti i pozzi. I risultati sono apparsi subito lusinghieri in quanto la ottima falda artesiana si è dimostrata atta a fornire tutta la portata necessaria. Come succede sempre in questi casi la difficoltà risiedeva solo nella regolazione delle pompe cioè nella definizione automatica della durata di funzionamento di ciascuna di esse. E’ infatti ben noto come, dovendo produrre una portata variabilissima da un giorno all’altro e da una stagione all’altra non sia facile ottenere un esercizio ottimale e cioè in grado di produrre i volumi d’acqua via via necessari senza dispendio energetico e con un adeguato sfruttamento delle fonti. La modalità che viene normalmente adottata quando, come a Sacile, le condotte adduttrici si immettono in un serbatoio di arrivo, è quella di dotare quest’ultimo di galleggianti con contatti elettrici che fermano tutte le pompe sommerse dei pozzi a serbatoio pieno e le mettono in moto, una di seguito all’altra, al verificarsi del suo svuotamento progressivo. Si raggiungono, in questo modo, risultati completamente diversi a seconda dell’entità dei consumi giornalieri d’acqua. In dettaglio, durante il giorno di massimo consumo il comportamento degli impianti è buono: le pompe dei pozzi, con un funzionamento pressocchè ininterrotto, forniscono la portata media giornaliera sufficiente per coprire un fabbisogno così elevato nel mentre è il serbatoio che, sfruttando l’intero invaso accumulato di notte, è in grado di fronteggiare la punta di consumo del giorno dopo. Invece nelle giornate di consumo minore e soprattutto in quelle di minimo fabbisogno, si verifica una grave anomalia di funzionamento dovuta al fatto che le pompe dei pozzi, non appena il serbatoio di arrivo tende a svuotarsi, provvedono a ripristinare immediatamente, grazie alla loro esuberante producibilità, il livello di massimo invaso. Ne consegue che durante la notte, essendo il serbatoio già pieno e pur essendo le pompe sommerse ferme, ha luogo lo sfioro di tutta l’acqua che i tre campi pozzi sono comunque in grado di addurre a gravità. L’anomalia appare intollerabile quando si pensi alle giornate nelle quali il volume prodotto a gravità dai pozzi nelle 24 ore della giornata tipo è superiore a quello richiesto dall’utenza nello stesso periodoe, ciononostante, di giorno debbono ugualmente funzionare le pompe dei pozzi nel mentre di notte viene scaricata dagli sfioratori la quasi totalità della portata in arrivo al serbatoio.
A Sacile il problema è stato risolto dotando l’impianto di sollevamento di un automatismo che consente di impostare, non già il livello massimo del serbatoio come accadrebbe con i galleggianti prima citati, ma invece una curva giornaliera dei livelli che deve assumere l’invaso durante le 24 ore della giornata tipo. La curva, definita sulla base della esperienza reale di esercizio ma comunque modificabile in ogni momento può essere del seguente tipo.

 

Esempio di tabella dei livelli imposti durante le 24 ore della giornata tipo

L’automatismo, verificato ad intervalli brevi e regolari il livello effettivo dell’acqua in serbatoio ed effettuato il paragone con il livello teorico prefissato per lo stesso istante nella curva, ordina, nel caso di livello reale più basso di quello teorico, la messa in moto di una nuova pompa e l’arresto in caso contrario. In altri termini è assicurato il riempimento e svuotamento del serbatoio secondo la curva preimpostata ed indipendentemente dalla reale entità dei consumi dell’utenza. Ovviamente nel caso i livelli durante l’intera giornata si mantengano costantemente al di sopra di quelli teorici, il chè può avvenire, ad esempio, quando la portata a gravità è superiore al fabbisogno, le pompe non entrano mai in funzione. Quanto sopra comporta una utilizzazione di tutto il volume utile del serbatoio in tutte le giornate dell’anno, con un risultato ottimale per il giorno di massimo consumo nel quale ha luogo una buona compensazione delle portate ma con un risultato ancora migliore in tutte le giornate di consumi bassi o medio-bassi nei quali l’esuberanza di volume utilizzato rispetto a quello sufficiente per la compensazione, provoca una diminuzione della portata che i pozzi prelevano dalla falda nelle ore diurne ed un aumento durante la notte, o, più esattamente, dalle ore 0 alle ore 7, nelle quali ha luogo l’invaso. Maggiori dettagli, su questo tipo di regolazione, possono essere letti nell’articolo “La regolazione dei serbatoi di compenso degli acquedotti” dove sono riportati anche dei grafici di funzionamento che aiutano nella comprensione delle modalità di utilizzazione del sistema.

Grafico giornaliero dei livelli del serbatoio di compensazione che si può utilizzare in un serbatoio generico di compensazione delle portate di un acquedotto qualsiasi avengte un’altezza di invaso totale di 6 m.

 

4. IL POTENZIAMENTO DELLA CENTRALE DI SOLLEVAMENTO DI S.LIBERALE

grafico del funzionamento della centrale di sollevamento in una giornata di consumi superiore alla media. Si nota chiaramente il funzionamento notturno a bassa e costante pressione mentre quello diurno segue le punte di consumo dell’utenza

Il problema da risolvere a Sacile riguardava non solo la portata da distribuire all’utenza ma anche la pressione di partenza della rete di distribuzione che. a causa della altezza dell’esistente serbatoio pensile limitata a soli 22 m sul suolo, risultavano ambedue assolutamente insufficienti.
La soluzione che in casi del genere viene suggerita dalla letteratura tecnica e che viene comunemente adottata da molti gestori è quella inerente la demolizione del serbatoio pensile e la sua ricostruzione ad una maggiore altezza pari almeno a 50 m, tale essendo la quota cui sollevare l’acqua per avere in rete una pressione atta a far fronte alle punte di consumo. Si vedrà come l’intervento attuato, anche se ben diverso, ha consentito di ottenere risultati migliori sia in termini di soddisfacimento dell’utenza sia di economia di gestione pur comportando investimenti molto inferiori.
La progettazione delle opere è stato preceduto da una attenta analisi dei consumi reali dell’acquedotto e di quelli prevedibili per un’intera annata del decennio successivo. Ne è risultato che, come sempre accade in acquedotti similari, le portate di punta, mediamente, si verificano per periodi molto brevi nel mentre quelle medie e medio basse sono di gran lunga le più frequenti. E’ apparsa evidente l’opportunità di scegliere due diversi regimi di esercizio degli impianti: per le portate basse e medio-basse che sono quelle che si verificano, durante l’anno, nella stragrande maggioranza delle ore, adottare il primo sistema e cioè utilizzare ancora l’esistente serbatoio pensile visto che, da

Le valvole di regolazione inserite nella colonna montante del serbatoio pensile di Sacile

numerose serie di calcoli di verifica della rete magliata, è risultato ancora atto, in considerazione del loro ammontare relativamente modesto, al rifornimento di dette portate. Sono evidenti i vantaggi ottenibili: evitare la costosa demolizione e ricostruzione del pensile e sollevare l’acqua, per la maggior parte del periodo annuo, a soli 22 m di altezza con ovvia minor spesa energetica e minori perdite occulte di rete che, come ben noto, sono funzione diretta della pressione di condotta.
Il regime di secondo tipo, da attuare automaticamente nei brevi periodi di maggior richiesta d’acqua da parte dell’utenza, doveva dare ambedue i risultati concreti prima indicati e cioè l’aumento della pressione e della portata dell’acqua immessa in rete.
Ed ecco le modalità seguite per l’attuazione pratica dei due regimi di funzionamento.
Le condotte verticali del pensile sono state sostituite con una sola tubazione di grande diametro derivata dal fondo vasca e quindi atta a svolgere la doppia funzione di entrata e di uscita dell’acqua dal serbatoio pensile La tubazione è stata dotata di una valvola motorizzata di intercettazione e di un by-pass con valvola di ritegno che si apre nel senso dell’uscita d’acqua. La valvola motorizzata, se aperta, mette il serbatoio in comunicazione diretta con la rete ripristinando il normale funzionamento della rete con alimentazione da serbatoio di testata. A valvola chiusa il serbatoio è scollegato dalla rete la quale può funzionare, con pompaggio diretto, a pressione completamente indipendente. Il by-pass con valvola di ritegno che si apre quando la pressione di rete scende al di sotto del il livello del serbatoio, consente l’intervento dell’invaso superiore in caso di mancanza di corrente o di panne della centrale di sollevamento. Importante , infine, la possibilità di imporre il valore di soglia, tarabile, della portata che definisce i due regimi.
Il funzionamento degli impianti così modificati è il seguente.
Quando il valore della portata in uscita dalla centrale rilevata dal misuratore e trasmessa in tempo reale al quadro di comando è inferiore alla soglia prefissata, l’automatismo mantiene aperta la valvola motorizzata e fa funzionare la serie di pompe di bassa prevalenza in modo da mantenere il serbatoio al suo massimo livello. La rete funziona allora a bassa pressione con tutti i vantaggi già citati. Non appena la portata aumenta e supera la soglia prefissata, la valvola motorizzata viene chiusa e, da tale momento, il serbatoio rimane pieno d’acqua, separato dalla rete ma pronto ad intervenire in caso di bisogno. Entra in funzione la serie di pompe ad alta pressione asservite alla portata in uscita. Ciò significa che quando la portata aumenta al di sopra di determinati valori, si avvia una nuova pompa. Se la portata diminuisce vengono via via fermate le macchine ad alta pressione finché, superata in diminuzione la soglia prefissata, si torna alle pompe a bassa pressione e all’apertura del serbatoio pensile. Uno dei pericoli cui potrebbe incorrere l’impianto è quello della permanenza, del tutto casuale, della portata per lunghi periodi su valori prossimi a quelli di soglia il che, a prima vista, sembrerebbe causare un continuo alternarsi di comandi e di controcomandi dannosi per l’esercizio. Si deve subito precisare come tale pericolo non sussista affatto in quanto, il passaggio da un regime all’altro come pure l’avvio o l’arresto di una pompa, provocano una importante modifica indotta nella portata assorbita dalla rete che, conferisce all’impianto una grande stabilità . Maggiori dettagli sul fenomeno possono essere letti nel capitolo 2.1 dell’articolo ” La regolazione degli impianti di sollevamento degli acquedotti”.
Un altro punto da chiarire è quello della possibilità che negli impianti con immissione diretta in rete le pompe agiscano fuori rendimento, anche se, a Sacile, tale inconveniente può essere evitato con una attenta regolazione delle soglie di intervento,. A tale riguardo bisogna tener presente come il funzionamento di una macchina al di fuori del punto ottimale possa causare, al massimo, una perdita di rendimento pari a qualche punto percentuale ma come, al tempo stesso, abbassare la prevalenza di pompaggio di qualche decina di metri significhi guadagnare decine e decine di punti percentuali nel rendimento: Il bilancio finale è quindi nettamente favorevole al funzionamento indicato! Passando al caso reale può darsi benissimo che la variazione di pressione che si verifica in rete durante il pompaggio ad alta pressione ed in diretta, porti la pompa allora in moto a lavorare fuori rendimento con perdita, poniamo dell’1% nel rendimento meccanico. Il danno economico è insignificante se paragonato a tutti i periodi, di grande durata durante l’anno tipo, nei quali, abbandonato il pompaggio a 50-60 m di pressione, si passa a quello a 22 m che comporta una spesa energetica di sollevamento pari al 30% di quella che si dovrebbe sostenere per il pompaggio a 50-60 m. Un ulteriore problema è quello della necessità di attenuare i colpi d’ariete che il pompaggio in diretta trasmette inevitabilmente alle condotte con il pompaggio in diretta. Esso è stato risolto in primo luogo dalla valvola di ritegno inserita nella colonna montante del pensile, la quale, al mancare della corrente elettrica o al verificarsi di qualunque inconveniente nelle pompe, aprendosi prontamente, mantiene comunque in rete la pressione del serbatoio. Il secondo elemento moderatore è dato dalla tipologia delle valvole di ritegno installate subito a valle delle pompe, che, essendo del tipo a membrana, si chiudono, al momento dell’arresto delle pompe, prima che abbia luogo l’inversione del flusso d’acqua.

Le òpompe di sollevamento ad asse verticale e con valvola di ritegno a membrana che riduce i danni dei colpi d’ariete

In definitiva gli impianti descritti hanno dimostrato piena validità attraverso decenni di esercizio, Si è potuto constatare come, nella realtà, gli impianti, pur consegnando correttamente l’acqua all’utenza in ogni condizione di esercizio, funzionino a bassa pressione per periodi lunghissimi nel mentre il regime di alta pressione è limitato a poche ore durante giornate particolari e rare quali possono essere per esempio le giornate particolarmente calde delle medie stagioni (primavera ed autunno).e durante quelle di calura estiva. L’alta pressione praticamente non esiste durante l’inverno e le giornate piovose delle altre stagioni. Il tutto si traduce in evidenti economie date non solo dal minor consumo di energia elettrica di pompaggio ma anche dalle diminuzione di perdite occulte dovuta alla minor pressione che si registra in rete in tutti i periodi notturni.
Risultati ancora migliori si sarebbero potuti se la serie di pompe di alta pressione fossero state del tipo a velocità variabile con possibilità, quindi, di mantenere, nel secondo regime (ad alta pressione), una portata e una pressione di alimentazione della rete ambedue variabili con continuità e restando asservite alle richieste dell’utenza. Al momento dell’esecuzione dell’intervento non era però ancora disponibile la tecnologia moderna che rende estremamente economici e facili sia la variazione dei giri che la regolazione dei motori elettrici.

 

5. IL POTENZIAMENTO DELLA RETE DI DISTRIBUZIONE

E’ consistito molto semplicemente nella costruzione di condotte di grosso diametro munite delle normali apparecchiature come saracinesche di intercettazione sfiati scarichi ed idranti atte ad integrare la rete esistente potenziandola ed estendendola a tutta la periferia.

 

6. ULTERIORI IMPIEGHI DELLA TECNICA DI POTENZIAMENTO SPERIMENTATA A SACILE

Serbatoio pensile di Portogruaro (VE)

 

Schema funzionamento precedente i lavori di sistemazione e modifica

 

 

Schema funzionamento secondo metodologia classica e non realizzato avendo anche a Portogruaro adottato invece il pompaggio a pressione regolata del tutto simile a quello di Sacile. In pratica di notte funzione il serbatoio pensile e di giorno il pompaggio diretto in rete a pressione maggiorata e regolabile

 

La validità delle scelte operate a Sacile e fin qui descritte hanno trovato piena conferma anche nell’acquedotto di un’altra cittadina avente le medesime caratteristiche e cioè a Portogruaro in provincia di Venezia. Lo schema idraulico di tale acquedotto vedeva campi pozzi, serbatoio di raccolta e compensazione a terra, centrale di sollevamento, serbatoio pensile ed infine rete di distribuzione del tutto simili a quelle descritte. Anche in questo caso invece di sostituire il serbatoio pensile di Portovecchio posto in testa alla rete ed avente un’altezza di soli 20 m con uno di maggior altezza, si è adottato il pompaggio con due regimi rispettivamente a bassa ed alta pressione definiti dalla soglia di portata e con utilizzazione del serbatoio pensile nel regime a bassa pressione. e pompaggio diretto in rete nell’altro. La costituzione degli impianti a potenziamento attuato e la loro gestione che dura ormai da oltre 20 anni sono identiche a quelle descritte prima per Sacile ed identici sono i benefici avuti. Se ne omette pertanto la descrizione limitandosi a confermare la bontà dell’intervento sia per quanto concerne il soddisfacimento dell’utenza sia l’economia di gestione ed, infine, la riduzione delle perdite occulte.

 

7. I PRINCIPALI RISULTATI CONSEGUITI

L’intervento di potenziamento di cui al presente lavoro ha consentito di chiarire importanti concetti sulla reale comportamento delle reti acquedottistiche concetti che, espressi in dettaglio negli altri articoli del sito, possono essere così riepilogati.
– Una rete di distribuzione d’acqua potabile soprattutto se a sollevamento meccanico, deve funzionare a pressione di partenza variabile asservita alle richieste dell’utenza. Deve pertanto essere abbandonata la regola, molto diffusa, in base alla quale tutti gli acquedotti dovrebbero essere dotati di serbatoio di testata che fissa in maniera irreversibile la pressione in testa alla rete.
– I consumi della rete non dipendono solo dalle richieste dell’utenza ma, almeno in parte, dalla pressione di esercizio. Ad esempio se per un determinato periodo la pressione di funzionamento è fatta aumentare, sempre restando entro i limiti di corretta consegna dell’acqua, aumenta anche la portata totale assorbita. Tale fenomeno, spiegato ampiamente nell’articolo “Fabbisogno, consumi, portate e perdite nella pratica di esercizio delle reti di distribuzione d’acqua potabile a sollevamento meccanico” dove sono riprodotti anche dei grafici di funzionamento reale degli impianti qui descritti, è dovuto non solo all’inevitabile crescita delle perdite occulte ma anche a quella del consumo reale dell’utenza.
– Le perdite di rete possono essere notevolmente contenute abbassando di notte la pressione di funzionamento della rete cioè limitandola entro valori appena sufficienti alla distribuzione delle modeste portate che l’utenza richiede durante le ore notturne;
– Occorre sovvertire la regola in atto che vede la produzione giornaliera d’acqua maggiore di quella notturna ed attuare tutti gli artifici possibili per aumentare, invece, la produzione notturna con cui sfruttare varie condizioni di favore come la maggior quota di falda ed il minor costo dell’energia elettrica. Il risultato può essere conseguito con una regolazione dei serbatoi di accumulo diversa da quella normalmente usata (Vedi articolo “La regolazione dei serbatoi di compenso degli acquedotti”)
– La presenza di un efficiente bay-pass e di valvole di ritegno del tipo contrappesate o a membrana atte a chiudersi, per effetto della proprio carico cinetico prima che si inverta il flusso dell’acqua, possono garantire un buon funzionamento degli impianti di sollevamento anche senza dispositivi particolari come le casse d’aria.
– La metodologia usata può essere ulteriormente migliorata usando, per il pompaggio diretto in rete, pompe a velocità variabile asservite al consumo dell’utenza, ed oggi facilmente reperibili in commercio.

 

8. CONCLUSIONI

Si sono descritte sommariamente delle opere effettivamente realizzate per il potenziamento di reti acquedottistiche di centri abitati di piccole dimensioni ma con caratteristiche moderne e razionali.
Da rilevare l’utilizzazione degli impianti esistenti e particolarmente del serbatoio pensile posto in testa alla rete di distribuzione senza dover rinunciare ad alcuni dei notevoli vantaggi che la tecnologia rende oggi disponibili per un esercizio corretto ed economico degli impianti, primo fra tutti il pompaggio diretto in rete a pressione variabile che, secondo l’opinione di chi scrive, ne costituisce uno dei concetti fondamentali.
Si sono fornite utili indicazione per l’attenuazione dei colpi d’ariete che il pompaggio diretto in rete inevitabilmente provoca ed infine per la regolazione dei serbatoi di compenso.
A conclusione dell’articolo corre l’obbligo di citare la “Compagnia Generale delle Acque” Società con sede a Venezia ed ora a Monselice (PD) per la qualità di progettazione, costruzione e gestione degli impianti descritti e, soprattutto, per aver dato modo a chi scrive, pur se in possesso di un titolo di studio modesto come è quello di geometra, di effettuare ampie ricerche e sperimentazioni dal vivo sia in Italia che in Francia presso la società “Compagnie Gènèrale des Eaux” di Parigi nota per l’alta tecnologia dei numerosi impianti dalla stessa costruiti e gestiti in tutta Europa.

 

INDIETRO AVANTI

ACQUEDOTTI CON ELEVATE CAPACITA’ DI COMPENSAZIONE DELLE PORTATE E DI ACCUMULO ENERGETICO

 

Accumulo acqua ed energia

1) PREMESSA

Uno degli interventi basilari che in un futuro sempre più prossimo dovrà essere sistematicamente adottato per la risoluzione dei problemi legati all’approvvigionamento idropotabile, riguarda senza dubbio la costruzione di capaci serbatoi di accumulo atti ad effettuare la compensazione delle portate per periodi ben più lunghi di quelli giornalieri comunemente in atto. Si deve notare come, in una annata tipo, i periodi di consumo molto elevato sono statisticamente in numero limitato e quindi il modo più razionale per farvi fronte è proprio quello dell’accumulo delle eccedenze di portata operate nei giorni di basso consumo per renderle disponibili durante i successivi di grande richiesta e statisticamente di breve durata. Tale circostanza, se da un lato risolve un problema della massima importanza, dall’altro fa rilevare un grave difetto proprio dei sistemi acquedottistici e cioè un pieno uso delle strutture molto limitato nel tempo mentre per la stragrande maggioranza esse restano sottoutilizzate. Se poi si considerano le usuali modalità di progettazione degli acquedotti che impongono di dimensionarli in funzione del consumo massimo dell’ora di punta e per di più maggiorato, per ulteriore garanzia, di un buon 50% si arriva alla constatazione che i servizi idropotabili presentano di solito elevatissimi costi di costruzione ma una utilizzazione effettivamente molto scarsa che incide notevolmente nei costi di esercizio.
Lo scopo di questa nota è dimostrare come sia possibile costruire acquedotti che svolgono al meglio il loro compito 24 ore al giorno per 365 giorni all’anno, potendo disporre di due diversi regimi di esercizio: il primo che, impiegando interamente ed a soli fini acquedottistici tutte le risorse disponibili, fa fronte ai brevi periodi di consumo elevato, il secondo che le utilizza, durante tutto il tempo restante, in parte per alimentare l’utenza ed in parte per produrre energia elettrica. Se ne ricava un impiego costantemente razionale ed economicamente valido dei complessi e costosi impianti.

2) LA SOLUZIONE PROPOSTA

Fig. 1 = Schema idraulico

Il problema in argomento può essere ricondotto alla modalità di risoluzione dell’accumulo dell’energia eccedente il fabbisogno del momento allo scopo di poterla utilizzare nei successivi periodi di grande fabbisogno energetico. I dispositivi atti allo scopo e di cui è nota l’esistenza, sono costituiti soltanto dagli accumulatori elettrici che hanno però il grave difetto di una potenza molto limitata e dagli impianti idroelettrici reversibili basati su un doppio uso e cioè produrre energia elettrica di giorno e pompaggio d’acqua dal serbatoio inferiore a quello superiore sfruttando i cascami di energia elettrica durante la notte o durante i periodi di sovrabbondanza energetica. In questi ultimi tempi si sta pensando, con gli stessi scopi, all’impiego dell’idrogeno. Altre modalità in corso di sperimentazione concernono lo stoccaggio di di aria compressa a pressioni elevatissime ma trovano ostacolo nel riscaldamento che ne deriva e che provoca rilevanti dispersioni energetiche. Gli esempi sono comunque molto pochi e si può considerare ancora inesistente un valido metodo di accumulo energetico.
La soluzione che viene qui proposta è basata sull’impiego di un capace serbatoio idropneumatico atto allo stoccaggio di acqua in pressione durante i periodi in cui si rende disponibile energia elettrica a bassi costi.

Lo schema idrico del sistema, riportato nella fig. 1 allegata comprende:

– un serbatoio di accumulo di tipo tradizionale, avente una capacità pari almeno al 50% del consumo totale previsto per il giorno di massimo consumo, posto all’arrivo dell’adduzione e nel quale pescano tutte le pompe di sollevamento. Nulla vieta l’adozione di serbatoi di maggiore capacità con cui poter effettuare la compensazione multi giornaliera od addirittura multi settimanale ottenendo, sia ai fini acquedottistici e sia a quelli idroelettrici, risultati ancora più eclatanti di quelli di cui si parla in dettaglio nella presente nota e di cui si è fatto cenno nell’introduzione;

– l’impianto di pompaggio con immissione in rete per alimentarla in diretta tramite pompa a velocità variabile asservita alle pressioni anch’esse variabili che di ora in ora bisogna mantenere in rete;

– un secondo impianto di pompaggio per l’alimentazione del serbatoio idropneumatico tramite una serie di pompe a velocità fissa a funzionamento pulsante ma con diversificate pressioni di mandata, oppure tramite pompe a velocità variabile atte a coprire tutta la gamma di sollevamento di cui si discute;

– il collegamento diretto tra serbatoio tradizionale e serbatoio idropneumatico tramite condotta di collegamento munita di apparecchiatura di intercettazione servo comandata ;

– l’impianto per la produzione di energia elettrica tramite una serie di turbine alternatori (T) funzionanti a velocità e potenza variabili atte a sfruttare l’esistente carico idraulico tra i due serbatoi anch’esso variabile ;

un serbatoio idropneumatico di cubatura identica a quello tradizionale prima citato ed in grado di accogliere l’acqua con una pressione variabile in funzione del momento ma che può arrivare anche a 100 m ed oltre di colonna d’acqua.

Il concetto di base della soluzione proposta è dato dalla presenza dei due serbatoi funzionanti il primo alla pressione atmosferica ed il secondo a pressione maggiorata ad arte e quindi dalla possibilità che tutta l’acqua in arrivo durante la notte, ed in pratica per tutto il periodo in cui si può disporre di energia elettrica a basso costo, possa essere pompata nel serbatoio idropneumatico onde poterla sfruttare durante periodi successivi con il duplice scopo di alimentare l’utenza ed al tempo stesso di produrre energia elettrica preziosa che normalmente viene immessa nella rete Enel. Come detto anche l’acqua utilizzata per produrre energia elettrica viene restituita nel serbatoio tradizionale dove torna ad essere disponibile per l’alimentazione dell’utenza.

Sono previste due strutture innovative come il serbatoio idropneumatico e la turbina/alternatore funzionante a velocità variabile le cui caratteristiche principali possono essere riepilogate come segue.

1) Il serbatoio idropneumatico.
Si tratta di una struttura del tutto simile alle autoclavi normalmente utilizzate per aumentare la pressione di esercizio delle piccole reti acqedottistiche con la sola differenza delle dimensioni che, in questo caso, sono molto maggiori. In sostanza è un grande contenitore a tenuta ermetica che accumula acqua nella parte inferiore ed aria compressa superiormente. Ciò gli consente di svolgere le stesse funzioni di un serbatoio sopraelevato ma con il vantaggio di poter variare a piacere la pressione di uscita dell’acqua. Nel caso specifico è in grado di contenere grandi volumi d’acqua ad una pressione tanto maggiore quanto più alta è la potenza disponibile per il pompaggio di immissione. È munito di compressore per realizzare una volta tanto il cuscinetto d’aria e le valvole di scarico dell’aria stessa. Maggiori delucidazione del serbatoio idropneumatico possono leggersi nell’omonimo articolo presente nel sito e direttamente cliccando qui

2) La turbina-alternatore.
Si tratta di una serie di macchine in grado di funzionare a portata e pressione diversificate producendo energia elettrica in quantità variabile in funzione dei volumi e delle pressioni che si rendono via via disponibili ma avente tutte le caratteristiche per poter essere accolta dalla rete Enel. Gli alternatori dovranno quindi possedere organi di regolazione dell’eccitazione o qualche altra modalità di modulazione di funzione  che gli consentano di funzionare a velocità diversificate in funzione dei salti utili disponibili ma con buoni rendimenti ed inoltre possedere un sistema di inverter atti a stabilizzare la frequenza della corrente prodotta.
Il funzionamento normale sarà il seguente.
Nei periodi di grandi consumi tutti gli impianti devono essere adibiti alla funzione specifica dell’acquedotto e cioè all’alimentazione idropotabile dell’utenza. A tale scopo i due serbatoi funzioneranno in parallelo ed ambedue a pressione atmosferica essendo aperte le condotte di collegamento e le valvole dell’aria. Essi contribuiranno pertanto con il loro intero volume di invaso alla compensazione delle portate consentendo di far fronte ai picchi di richiesta dell’utenza grazie alla loro notevole capacità. Nel caso si sia scelta la soluzione di grande capacità si potrà dar luogo alla compensaziine settimanale o addirittura a quella quindicinale con tutti i vantaggi che ne derivano.
Terminato il periodo critico il serbatoio idropneumatico inizierà a svolgere la sua azione e saranno pertanto chiuse le valvole di collegamento con l’altro serbatoio e le valvole di scarico dell’aria mentre sarà ripristinato, con i compressori, il cuscinetto d’aria compressa e si darà inizio all’accumulo dell’acqua in arrivo in due diversi modi e cioè nel serbatoio idropneumatico ogni qualvolta si rende disponibile energia elettrica a basso costo come ad esempio durante la notte, oppure nell’altro serbatoio di tipo tradizionale negli altri casi.
La rete acquedottistica viene alimentata da una pompa a velocità variabile che pesca dal serbatoio tradizionale ed immette l’acqua direttamente in rete a pressione variabile in funzione delle richieste dell’utenza e quindi elevata di giorno quando esse sono massime e bassa di notte e nei periodi di basso consumo. Durante il giorno ed in genere quando la corrente elettrica è a costo maggiorato, entrano in funzione le turbine che producono corrente elettrica preziosa sfruttando l’acqua in pressione del serbatoio idropneumatico e che viene scaricata nel serbatoio tradizionale onde renderla disponibile per l’utenza.
A sua volta quest’ultimo serbatoio svolge un duplice ruolo potendo sia rifornire la rete seguendone a puntino le richieste oppure rifornire il serbatoio idropneumatico.
Interessante far notare la grande capacità di accumulo totale d’acqua dato dalla presenza dei due serbatoi ambedue in grado, tutte le volte che si presenta la necessità, di far pervenire in rete tutto il volume invasato in precedenza.

Ed ecco la descrizione di una normale giornata di funzionamento rappresentata nel grafico della fig. 2 e nella tabella allegati.

Fig. 2 = Grafico di funzionamento della giornata tipo

Durante la precedente notte tutta l’acqua in arrivo nel serbatoio tradizionale e quella accumulata in precedenza sono state pompate a pressione elevata nel serbatoio idropneumatico fatta eccezione per la piccola parte che è servita per alimentare in diretta l’utenza. Il sollevamento ha avuto luogo tramite la serie di pompe a giri fissi con funzionamento pulsante oppure, a seconda dell’installazione fatta, da pompe a velocità variabile, onde adeguare portata sollevata e la pressione alle condizioni del momento.

Al mattino (ore 5 nell’esempio) il serbatoio tradizionale è quasi vuoto mentre l’altro è al massimo invaso. Quando iniziano ad aumentare i consumi dell’utenza (ore 7) il serbatoio idropnematico comincia a svuotarsi per alimentare le turbine che producono corrente elettrica. Nel serbatoio tradizionale entra sia l’acqua dell’adduzione e sia quella scaricata dalle turbine e quindi c’è la disponibilità massima per l’ alimentazione dell’utenza nel mentre l’acqua in esubero rispetto ai consumi è immagazzinata nel serbatoio tradizionale stesso. Alle ore 17 il serbatoio idropneumatico è vuoto ed ha termine la produzione di energia elettrica. La notte successiva il ciclo si ripete con riempimento del serbatoio idropneumatico ed alimentazione in diretta della rete a bassa pressione.

Da notare come la notevole capacità di invaso dei due serbatoi consenta di utilizzare al meglio gli impianti di produzione idroelettrica potendo nelle ore notturne immettere nel serbatoio idropneumatico non solo la portata in arrivo dall’adduzione ma anche quella accumulata in precedenza nel serbatoio tradizionale. Ciò sarà meglio comprensibile esaminando il grafico ed i dati dell’esempio di una giornata tipo.

Resta da definire la pressione di funzionamento del serbatoio idropneumatico per la quale sussiste un buon grado di libertà per cui si può impostare il regime che meglio si adatta alle condizioni del momento. Infatti il funzionamento di tale struttura segue la regola di “Mariotte” raffigurata  nel grafico a lato dove sono visibili  le variazioni delle percentuali di riempimento in funzione della pressione. Sono tracciate in linea continua 6 diverse curve di esercizio che sono funzione dalla pressione iniziale dell’aria compressa immessa dai compressori. Ad esempio se si adotta la curva n. 2 è necessario all’inizio (ed una volta soltanto) immettere aria compressa a due bar il che significa appunto una pressione di due bar a serbatoio vuoto. Tramite pompaggio si otterrà un riempimento del 20% del volume totale del serbatoio con una pressione di 2.5 bar, del 50% con 4. Il limite massimo corrisponde ad un 80% di riempimento del serbatoio con 10 bar di pressione. La stessa pressione descritta si rende poi disponibile per il funzionamento delle turbine, ovviamente fatte salve le perdite di rendimento dell’insieme. Qualora si volesse operare a maggior pressione occorre scegliere una curva di valore più elevato come ad esempio la curva n.3. Si ritiene però consigliabile di contenere la pressione massima al valore di 10 bar per facilitare la regolazione delle turbine ed inoltre per contenere il riscaldamento-raffreddamento del cuscino d’aria durante le fasi di compressione-decompresione.

Nell’applicazione descritta si verificano variazioni di temperatura del cuscino d’aria temperatura che tende ad aumentare durante la compressione ed a diminuire in caso contrario. Si tratta degli stessi problemi che si sono incontrati nella ricerca di realizzare una modalità di accumulo di energia del tutto simile a quella qui presentata con la sostanziale differenza dell’impiego di aria compressa immagazzinata a pressioni elevatissime (fino a 500 bar), problemi che, in quegli esperimenti, si è tentato di superare immagazzinando il calore prodotto in speciali piastre metalliche ad alto assorbimento calorico ma che alla fine hanno decretato il fallimento di tale tecnica di accumulo energetico . Si ritiene che il problema non sussista nella soluzione quì proposta perché in questo caso il calore prodotto è modesto sia perché la variazioni di pressione in serbatoio è molto lenta sia perché è di valore molto piccolo. Nell’esempio riportato si passa da 2 a 10 bar in cinque ore durante le quali tutto il maggior calore dell’aria viene assorbito dal grande volume d’acqua che vi si trova a contatto e che pertanto aumenterà leggermente di temperatura. Il fenomeno contrario avrà luogo durante la successiva fase attiva di produzione energetica con decompressione dell’aria che avrà ben 10 ore a disposizione. Il cuscinetto d’aria, grazie al passaggio da 10 a 2 bar, si raffredderà facendo ritornare fresca anche l’acqua con cui è a contatto e che riprenderà la temperatura originale, fatte salve piccole perdite energetiche di valore del tutto trascurabile.

3) CONCLUSIONI

Si è descritto un sistema idrico atto a realizzare in primo luogo una notevole compensazione delle portate degli acquedotti e cioè di immagazzinare il surplus di portata caratteristica peculiare di certi periodi per restituirlo successivamente al verificarsi di richieste eccezionalmente elevate. Trova così compimento una operazione che, potendo riguardare perfino la compensazione quindicinale o addirittura mensile delle portate, rappresenta un risultato importantissimo nella gestione dei moderni acquedotti assillati da una carenza delle fonti sempre più sentita e difficile da colmare.
Il secondo scopo che si raggiunge è la piena utilizzazione di opere come quelle necessarie per l’accumulo di ingenti volumi idrici le quali in un regime acquedottistico normale rimarrebbero sottoutilizzate per lunghi periodi. Con le opere proposte si approfitta della notevole disponibilità di invaso per lunghi periodi per produrre energia elettrica preziosa in quanto prodotta nelle ore diurne di maggior pregio.
Vai all’indice

INDIETRO

AVANTI

RETE ACQUEDOTTISTICA INTEGRATA NEL TERRITORIO

1) PREMESSA

Gli insegnamenti impartiti ai giovani ingegneri: alimentare gli acquedotti con alte pressioni di notte quando i consumi sono minimi ed abbassarla quando la richiesta è elevata.

L’alimentazione idrica dei territori pianeggianti risulta razionalmente risolta tramite le reti di distribuzione magliate in uso con risultati soddisfacenti nella gran generalità dei casi. Non é così per le aree montane, collinari o comunque altimetricamente variegate che presentano problemi cui non si é ancora trovato adeguata soluzione tanto é vero che si é sovente costretti a far funzionare la rete di distribuzione con pressioni eccessivamente elevate ma necessarie per vincere i dislivelli altimetrici del territorio salvo poi riportarle entro valori compatibili con l’uso tramite le valvole di riduzione di cui sono muniti gli allacciamenti privati d’utenza delle aree depresse.
Ne é derivata una notevole semplificazione costruttiva degli impianti idrici generalmente costituiti da reti unificate anche in presenza d’aree abitate poste a grandi dislivelli altimetrici l’una dall’altra, cui fanno riscontro inconvenienti di vario genere e, primo fra tutti, quello che costituisce una vera piaga dei moderni acquedotti consistente in  una perdita occulta d’importanti volumi d’acqua.
Scopo del presente lavoro é la descrizione di tali inconvenienti e la formulazione d’alcune ipotesi di una rete di distribuzione atta al funzionamento ottimale qualunque sia l’andamento altimetrico del suolo del territorio alimentato.
Poiché i problemi da risolvere sono, come detto, quelli dei territori aventi notevoli dislivelli altimetrici, é su di loro che viene incentrata gran parte della trattazione. Si vedrà nella parte finale dell’articolo come le opere proposte siano atte all’alimentazione idrica anche dei territori pianeggianti.

 

2) DIFETTI DELLA RETE UNIFICATA

Il funzionamento ad alta pressione é facilitato quando le fonti di un acquedotto si trovano a quote così elevate da consentire l’alimentazione a gravità dell’intera rete di distribuzione di tipo unificato per tutta l’estensione del territorio da servire. Sussistono anche in questo caso gravi problemi quali la necessità di impiegare tubazioni ed apparecchi in grado di sopportare l’anomala pressione, l’usura cui sono necessariamente sottoposti gli impianti, la possibilità tutt’altro che remota dei frequenti guasti che una pressione così alta e soprattutto le relative sovrappressioni per colpi d’ariete, provocano. Ma sono le rilevanti perdite occulte che sempre si verificano in reti di questo tipo a giocare un ruolo fondamentale ed altamente dannoso. Occorre rilevare come la loro presenza rappresenti la condizione “sine qua non” per questi tipi di reti in quanto sono le perdite stesse, e la notevole portata che comportano in condotta, ad impedire che, in presenza di consumi nulli o molto bassi dell’utenza, la rete si metta in idrostatica e quindi sottoponga le zone poste alle quote inferiori a pressioni inaccettabili. In pratica la percentuale di perdita d’acqua delle reti di cui si discute raggiunge e supera il 50% dei volumi immessi rappresentando un onere assolutamente ingiustificato, soprattutto in considerazione della scarsità d’acqua che incombe sulla moderna società.
Ma é nelle reti a sollevamento meccanico che si registra la situazione paradossale di un servizio che, oltre agli inconvenienti citati, accusa anche un notevole dispendio energetico dovuto al pompaggio all’alta pressione d’esercizio di cui si discute, pressione che, come già detto, deve successivamente essere in buona parte dissipata!
Sono quelli indicati i motivi che spingono ad una continua ricerca di risoluzioni nuove basate su un razionale uso dei notevoli mezzi che la tecnologia acquedottistica mette a disposizione. Tra tutte, quella che viene qui illustrata rappresenta un modo per affrontare il problema con metodologie mai sperimentate ma che vengono proposte per iniziarne la discussione ed affrontarne la critica con la speranza di giungere ad una possibile soluzione reale.

 

3) LA RETE PROPOSTA

La rete idrica atta a risolvere i problemi indicati deve possedere i seguenti requisiti principali che, a quanto risulta a chi scrive, non sono mai stati raggiunti a causa delle obiettive difficoltà che sussistono:
a) Una linea piezometrica che, in qualsivoglia territorio sia pianeggiante sia collinare o montano, rimanga parallela al suolo in tutte le condizioni di funzionamento e quindi anche durante i periodi di basso consumo dell’utenza soprattutto notturni;
b) Una pressione di funzionamento sul suolo regolabile in funzione dei consumi e quindi più elevata durante le ore di maggior consumo e, compatibilmente con una alimentazione pur sempre adeguata dell’utenza, più bassa in quelle notturne caratterizzate, oltre che da una più modesta richiesta idrica, anche da minori perdite di carico delle condotte sia stradali che interne alle abitazioni.
Viene esaminata una rete di tipo unificato analoga a quelle citate e comunemente adottate ma dalle quali si distingue nettamente per la presenza di fasce stabilizzatrici poste a quota opportuna ed in linea di massima ogni 50 metri di dislivello. Ogni fascia, avente lo scopo di controllo e regolazione della pressione di rete, é costituita essenzialmente da un serbatoio idropneumatico ad alimentazione propria e da una condotta trasversale di grosso diametro e che si sviluppa all’incirca lungo un’unica curva di livello del terreno e quindi intersecando tutte le condotte longitudinali di rete che, con diametri nettamente inferiori, scendono seguendo, all’incirca, le linee di massima pendenza del suolo. Le caratteristiche del serbatoio idropneumatico, in dettaglio visibili nell’articolo omonimo presente in questo sito sono date, sinteticamente, dalla particolare costituzione della sua vasca che, essendo interamente a tenuta ermetica, é in grado di contenere, oltre ad un gran volume d’acqua, anche, nella sua parte superiore, un notevole cuscino d’aria che gli permette di funzionare a pressione variabile in funzione di quella dell’acqua immessavi dalla condotta d’adduzione e di costituire, al tempo stesso, una riserva d’acqua in pressione pronta ad entrare automaticamente in rete per coprire eventuali picchi di consumo dell’utenza. Sono queste peculiari caratteristiche del serbatoio idropneumatico e la presenza della citata condotta trasversale che, opportunamente regolati dall’impianto di telecomando e telecontrollo, permettono di giungere, come sarà spiegato, agli auspicati risultati.
Sia ad esempio da alimentare, con sollevamento meccanico dell’acqua, un territorio come quello illustrato nella figura 1 e caratterizzato da un dislivello di 130 metri e produzione dell’acqua a quota zero.

 

Fig. 1 = Planimetria rete di distribuzione in territorio a pendenza uniforme

 

La rete di distribuzione che viene proposta é costituita da due distinti tipi di condotte: di piccolo diametro quelle longitudinali ad andamento che segue la linea di massima pendenza e di grande diametro quelle trasversali poste tassativamente lungo le varie curve di livello per costituire la chiusura delle maglie e, in alcuni casi, le citate fasce di stabilizzazione della pressione. Una siffatta disposizione delle condotte garantirà, unitamente a particolari modalità d’alimentazione idrica, un sufficiente parallelismo tra linee piezometriche e profilo del suolo anche per condizioni di funzionamento molto diversificate.
Le tre fasce stabilizzatrici ed i relativi serbatoi idropneumatici sono, nell’esempio, posti rispettivamente a quota 30, 80 e 130 metri e ognuno di loro é in grado di rifornire la rete con una pressione che può andare, in normale esercizio, da un minimo di 15 ad un massimo di 60 metri circa rispetto al suolo dove é ubicato il serbatoio stesso, ma che, in caso d’emergenza, può variare a piacere. Sarà la centrale di sollevamento, tramite i gruppi di pompe e le relative condotte d’adduzione di cui é dotata, uno per ciascun serbatoio idropneumatico e regolati dall’impianto di telecomando e telecontrollo, a fissare la pressione che di ora in ora ogni serbatoio deve mantenere essendo il loro funzionamento asservito alle pressioni reali della rete.
In alcuni casi i serbatoi inferiori risulteranno sempre alimentati dalla rete che li sovrasta la quale ricorre a detto artificio per regolare la sua pressione sempre esuberante rispetto al fabbisogno. Da quest’ultimi serbatoi, i quali, per quanto spiegato, possono anche essere privi di condotta adduttrice, pescheranno alcune pompe sussidiarie di sollevamento regolate in modo da far lavorare in maniera opportuna il serbatoio d’aspirazione stesso.
A questo punto é importante rilevare come sia la pressione della fascia stabilizzatrice a fissare l’andamento della superficie piezometrica, variando di conseguenza la portata in uscita o, al limite, anche in entrata nel serbatoio idropneumatico.
Allo scopo la rete sarà munita di strumenti per la misura e la trasmissione in tempo reale alla centrale di sollevamento di tutti i dati di funzionamento ed in particolare delle pressioni nei punti caratteristici della rete, le portate e pressioni in uscita o in entrata nei serbatoi idropneumatici e dalla centrale di sollevamento, i livelli dell’acqua all’interno di tutti i serbatoi. Per dare possibilità di adeguare la rete alle condizioni reali di funzionamento alcune delle condotte longitudinali in pendenza saranno di diametro superiore a quello di dimensionamento teorico e saranno munite di valvola servocomandata che sarà mantenuta normalmente chiusa o strozzata a seconda delle necessità reali.
La rete descritta sarà dimensionata in modo da soddisfare, sotto la supervisione dell’impianto centrale di telecontrollo e telecomando, le seguenti condizioni:
Durante i periodi di richiesta minima notturna, il serbatoio superiore dovrà immettere in rete la quasi totalità dell’acqua necessaria nel mentre il suo flusso percorrendo l’intera estesa delle condotte longitudinali che, come già precisato, sono di piccolo diametro, assumerà una superficie piezometrica parallela al suolo e ad un’altezza minima da esso data la bassa pressione in cui sono mantenuti i serbatoi. L’andamento di detta superficie piezometrica sarà garantito dalle tre fasce chiamate appunto stabilizzatrici le quali, mantenute appositamente a bassa pressione, interverranno fornendo o ricevendo acqua dalla rete a seconda che questa tenda ad assumere rispettivamente livelli inferiori o superiori di quelli desiderati. Il tutto sulla base delle pressioni reali misurate nei punti caratteristici dell’intera rete e trasmessi in tempo reale al centro.
Quando si arriva all’orario in cui cominciano ad aumentare i consumi dell’utenza, l’impianto deve riportare le pressioni in rete alle quote prefissate per tale orario e detto risultato viene ottenuto aumentando via via le pressioni ai vari serbatoi idropneumatici e curando che, di ora in ora, siano assicurate ai nodi di rete le quote prefissate indipendentemente dalla portata richiesta dall’utenza. Anche in questo caso l’andamento della superficie piezometrica sarà assicurato dalle fasce stabilizzatrici alla cui pressione si adegueranno le condotte collegate variando, di conseguenza, la portata che esse prelevano o immettono nei vari serbatoi.
Nell’ora di massimo consumo i serbatoi tenderanno a portarsi verso le pressioni più alte allo scopo di adeguare le pressioni rilevate in rete ai valori loro prefissati per tale orario e ciò indipendentemente dalla portata realmente richiesta nella giornata in esame.
In definitiva il funzionamento della rete é basato sul mantenimento di una superficie piezometrica sempre sufficientemente parallela al suolo, bassa nelle ore di minor consumo e che aumenta man mano fino ad assumere il suo valore più elevato nell’ora di punta per poi ridiscendere ai valori minimi durante la sera. Se le opere sono correttamente dimensionate, di notte la portata consumata dall’utenza proviene, in massima parte, dal serbatoio superiore ed accusa perdite di carico perfettamente congruenti con l’andamento altimetrico del suolo. Essendo questa una condizione puramente teorica difficilmente attuabile nella realtà, saranno le fasce stabilizzatrici ad intervenire con modeste correzioni nel mentre, qualora tali interventi risultassero eccessivi, sarebbe sempre possibile adeguare la rete operando sulle valvole di regolazione di cui sono, allo scopo, munite alcune delle condotte longitudinali.
Un elemento da tenere sotto controllo é il volume d’acqua che ogni serbatoio rifornisce giornalmente alla rete in quanto, trattandosi d’acqua soggetta a sollevamento meccanico, i costi energetici sono tanto più elevati quanto é maggiore la quota dei serbatoio di arrivo e di conseguenza la prevalenza manometrica delle pompe. Dovrà quindi essere favorita, tramite una attenta progettazione della rete ed un accurato esercizio degli impianti, l’utilizzazione dei serbatoi posti alle quote inferiori e ridotto al minimo l’intervento di quelli più elevati tenuto presente che quest’ultimi, in tutti i periodi di bassi consumi, immettono nella rete la quasi totalità dell’acqua necessaria ma che, trattandosi appunto di consumi ridotti, i relativi volumi d’acqua sono comunque modesti. Sarà soprattutto durante le ore di maggiore richiesta idrica che, compatibilmente con la pressione di rete tenuta costantemente sotto controllo, occorre far funzionare i serbatoi inferiori alla massima pressione e ridurre quella del serbatoio più alto, il tutto reso possibile dalla grande elasticità del sistema e dalla pronta risposta di ogni serbatoio, in fatto di portata emessa, alla variazione della sua pressione di funzionamento. Da rilevare come l’immissione dell’acqua della rete in uno dei serbatoi più bassi effettuata allo scopo di riportare la pressione di rete stessa ai valori prefissati, non comporta la dissipazione del carico idraulico posseduto in quel momento. Al contrario il volume in entrata mantiene la pressione e resta pronto a tornare in rete direttamente oppure tramite le pompe sussidiarie già citate essendo questa una delle caratteristiche precipue dei serbatoi idropneumatici. E’ evidente la profonda diversità con i normali serbatoi di accumulo per i quali ogni immissione d’acqua dalla rete significa portarla immediatamente a contatto con l’atmosfera e quindi perdere tutto il carico idraulico posseduto. Un’altra caratteristica favorevole del sistema é data dalla compensazione oraria di portata che viene in continuo operata dai serbatoi idropneumatici con conseguente eliminazione delle punte massime di prelievo. La portata da sollevare potrà quindi corrispondere, come valore massimo, alla portata media oraria evitando così di usare la condotta di adduzione con le maggiori perdite di carico che le punte di consumo provocherebbero.

 

4) LA CENTRALE DI SOLLEVAMENTO

Il cuore di tutto il sistema idrico che viene qui proposto é dato, per le modalità del tutto particolari di esercizio, dalla centrale di sollevamento.
Essa comprenderà, oltre alle apparecchiature di riserva che dovranno assicurare come minimo un’alimentazione di base in caso di guasto delle apparecchiature principali, altrettanti gruppi di sollevamento ed adduzione quanti sono i serbatoi idropneumatici presenti in rete. Ogni gruppo sarà composto principalmente da una pompa a velocità variabile atta a sollevare con buoni rendimenti elettromeccanici l’intera gamma di portate richieste e da una condotta per l’adduzione di tali portate nel serbatoio di competenza. Le pompe a velocità variabile, come meglio spiegato nell’omonimo articolo visibile nel sito , sono delle normali pompe centrifughe che, essendo abbinate ad un dispositivo elettrico di regolazione della loro velocità di rotazione chiamato inverter, possono cambiare automaticamente ed in continuazione portata e pressione dell’acqua sollevata sulla base agli ordini ricevuti dall’impianto centralizzato di comando e controllo.
I serbatoi più bassi, essendo sempre riforniti dalla rete, in alcuni casi, sono privi d’adduzione propria e sono invece muniti di pompe sussidiarie del tutto analoghe alle altre, destinate però a svolgere lo stesso ruolo di regolazione del livello con modalità completamente diverse cioè non tramite immissione d’acqua ma tramite prelievo dal serbatoio idropneumatico di loro competenza. In pratica queste pompe, anch’esse con asservimento alle pressioni dei nodi, aspirano dai serbatoi inferiori ed immettono la portata in quelli superiori regolando di conseguenza la pressione dell’acqua nel serbatoio di presa.
Molto importante l’impianto di telecomando e telecontrollo che sovrintende al funzionamento di tutte le apparecchiature della centrale e di quelle della rete. Il programma di gestione dovrà consentire innanzi tutto che vengano memorizzati i dati di pressione dell’acqua in condotta che di ora in ora si desidera venga mantenuta nei punti caratteristici della rete, dati che si deve poter variare ed aggiornare in ogni momento sulla base dei risultati reali d’esercizio. L’impianto, ricevute in tempo reale le pressioni effettive di rete, provvederà a modificare la velocità di rotazione fino a riportarle al valore prefissato per ognuno dei punti tenuti sotto controllo. Tale risultato dovrà essere ottenuto facendo intervenire per primi i serbatoi più bassi, e solo quando essi si dimostrano insufficienti, via via quelli posti a quota più elevata. Se necessario l’impianto ordinerà la regolazione delle valvole poste su alcune condotte longitudinali allo scopo di ridurre l’intervento del serbatoio superiore soprattutto di notte

 

5) ESEMPIO DI RETE INTEGRATA

Le modalità di funzionamento della rete di distribuzione acquedottistica che si vuole qui proporre, sono rese meglio comprensibili con un esempio. Per semplicità viene esaminata una rete composta da una condotta singola posta a servizio di un territorio in pendenza. Il suo funzionamento idraulico é simile a quello di una rete magliata destinata a servire la stessa area per cui identiche risultano le conclusioni che se ne possono trarre. La condotta si svolge lungo la linea di massima pendenza del terreno ed é munita di tre serbatoi idropneumatici posti ad un dislivello di circa 50 metri l’uno dall’altro.

 

Fig. 2 = Profilo schematico rete di distribuzione in territori a pendenza uniforme

 

Nel profilo allegato di figura 2 sono riportati i prelievi e i dati di funzionamento per la portata media giornaliera, per quella massima dell’ora di punta ed infine per quella minima notturna. Si vede come, con la regolazione supposta nell’esempio, siano soddisfatte le due condizioni poste come base dell’intera idea progettuale e cioè una piezometrica sufficientemente parallela al terreno ed una pressione sul suolo regolata in funzione dei consumi e quindi rispettivamente alta, media e bassa per le portate massima, media e minima.
Questi i dati salienti di alimentazione dei tre serbatoi. In quello alto (S3) nelle 24 ore viene addotta, tramite propria condotta adduttrice in derivazione dalla centrale di sollevamento, una portata variabile da 28 l/sec a 64 l/sec con una pressione di pompaggio che va da un minimo di 169 m circa ad un massimo di 231. In quello medio (S2) una portata da 17 a 84 l/sec con una pressione da 113 a 189 m e quindi notevolmente inferiore di quella precedentemente indicata per S3. Nel serbatoio inferiore (S1) per la portata massima dell’utenza si ha un’adduzione di 31 l/sec. ad una pressione di 103 m. circa, per la portata media l’acqua in arrivo da monte (1 l/sec.) è quasi nulla a fronte di quella in uscita dal nodo(13 l/sec) per cui l’adduzione ammonta a 12 l/sec. circa mentre per i consumi minimi il serbatoio riceve dalla rete una portata di soli 9 l/sec. (13 – 4) ad una pressione di 61 m. atta a dissipare il carico in eccesso e riportarla quindi entro i valori prestabiliti. Sarà quindi munito di proprio impianto di risollevamento, non indicato nel profilo di fig. 2, che immette quest’ultima portata nel serbatoio medio (S2) con pompaggio asservito alla pressione di rete.
Si rileva come, generalmente, l’impiego delle pompe risulti congruo con una buona economia energetica di sollevamento in quanto i volumi d’acqua addotta sono equamente distribuiti tra i due serbatoi superiori con leggera prevalenza di quello più basso (S2), nel mentre é modesto il volume che, di notte, la rete immette nel serbatoio inferiore (S1) e che, pertanto, deve essere risollevato.
Sussiste un ulteriore fattore che gioca a favore del risparmio energetico dato dall’assenza di picchi di portata dell’acqua da sollevare e quindi delle maggiori perdite di carico, dovuto alla azione di compensazione oraria normalmente svolta dai serbatoi idropneumatici grazie alla quale la portata massima pompata é la Q media oraria.
Interessante rilevare l’importanza del ruolo svolto dal serbatoio S2 nella regolazione della pressione di funzionamento il quale, a tale scopo, varia continuamente la portata immessa in rete. Nell’ora di punta degli 84 l/sec in arrivo dalla centrale, 20 l/sec escono localmente dal nodo, 16 l/sec entrano in rete verso monte e 48 l/sec verso valle. Con consumi medi vi vengono addotti 62 l/sec dei quali 42 l/sec sono diretti verso valle e 7 l/sec verso monte, mentre la notte, con consumi minimi dell’utenza, riceve virtualmente da monte 12 l/sec per mandarne a valle 25: la portata realmente derivata dalla centrale é, quindi, di 17 l/sec dei quali 4 rappresentano il consumo del nodo.
Poichè le difficoltà maggiori di un circuito come quello dell’esempio sono quelle relative alle portate minori, si è spinta la ricerca fino al limite estremo non attuabile nella realtà cioè al caso, puramente ipotetico, di richiesta nulla dell’utenza riportando nel profilo di fig. 2 i relativi dati di funzionamento e l’andamento della linea piezometrica. Anche in tale ipotesi la piezometrica mantiene un buon parallelismo con i suolo. Ne risulta una portata di 18 l/sec contro i 9 l/sec reali con portate minime notturne, portata che, partendo dal serbatoio superiore, percorre la condotta per l’intera sua lunghezza con dissipazione di tutto il carico posseduto, viene immessa nel serbatoio inferiore per essere poi risollevata nuovamente in alto. Il ciclo si ripete per tutto il tempo in cui la portata prelevata dall’utenza è pari a zero.
Quella che appare evidente nell’esempio é la grande elasticità del sistema che consente molteplici varianti d’esercizio e pertanto, senza bisogno di costruire nuove opere, di adeguare il servizio idrico alle più disparate necessità contingenti come sarebbero pressioni di esercizio in tutto o in parte diverse da quelle indicate in profilo. Qualora lo si volesse, si potrebbe anche mantenere in rete una pressione di consegna dell’acqua costante giorno e notte.
E’ da rilevare inoltre come le scelte operate nell’esempio non siano affatto univoche ma che sussistano varianti atte ad adeguare veramente la rete alle caratteristiche del territorio. Basti pensare alla quota altimetrica di progetto dei serbatoi idropneumatici da cui possono derivare sostanziali differenze costitutive e di esercizio della rete. Nell’esempio i serbatoi sono stati posti ad un dislivello di circa 50 metri l’uno dall’altro. In sede di progettazione esecutiva sono invece da esaminare attentamente tutti gli elementi che influiscono sulle quote potendo scegliere anche un dislivello notevolmente maggiore (ad esempio 100 metri) da uno all’altro come pure uno inferiore come ad esempio 20 soli metri. Nel primo caso si otterrebbero una struttura acquedottistica più semplice e minori spese di costruzione ma un onere di esercizio più elevato dato dalla maggior prevalenza delle pompe e da una maggiore dissipazione di carico idraulico. Nell’altro caso si avrebbero risultati opposti dati dalla grande facilità e possibilità di regolazione che il modesto intervallo altimetrico allora esistente da un serbatoio all’altro e la grande escursione di pompaggio propria delle pompe a velocità variabile consentirebbero di attuare, il tutto a prezzo di un più elevato costo delle opere.
E’ interessante anche esaminare quale sarebbe il funzionamento di una rete di tipo tradizionale che sostituisse, nell’esempio, la rete integrata descritta. Trattandosi di rete unificata l’intera portata dovrebbe essere sollevata alla massima pressione, valutabile in circa 230 metri, non solo di giorno ma anche nei periodi notturni di scarso consumo idrico. Per tutta la durata di questi ultimi l’intera rete tenderebbe a lavorare in idrostatica cioè con una pressione di circa 180 metri e quindi assolutamente inadeguata per le zone basse. Inutile far rilevare come questa sia una condizione puramente teorica in quanto nella realtà sono le perdite occulte che, aumentando tassativamente e vertiginosamente, assicurano una pressione notturna inferiore.
Ciò spiega l’insorgere nella rete tradizionale di tipo unificato dei difetti già elencati e soprattutto le rilevanti perdite occulte che tali reti inevitabilmente accusano.


6) APPLICABILITA’ DEL SISTEMA

Si é visto come la rete integrata descritta nei capitoli precedenti sia atta alla distribuzione dell’acqua in territori ad elevata pendenza del suolo. Si vuole ora far rilevare come le sue doti di grande flessibilità costruttiva e di esercizio le consentano di ottenere lusinghieri risultati qualunque sia l’andamento del terreno da servire.
Esaminiamo il caso, tutt’altro che raro, di una città composta da un’ampia zona pianeggiante a bassa quota dalla quale emergono aree collinari abbastanza elevate. In tale situazione una rete di tipo tradizionale con una superficie piezometrica che segua le bizze del terreno é assolutamente impensabile tanto é vero che vi si rinuncia a priori e si ricorre frequentemente ad una rete unificata funzionante con la pressione necessaria per superare il culmine delle aree collinari nonostante vi trovino origine tutti gli inconvenienti elencati nell’apposito capitolo.
Anche ad una situazione così critica si può porre rimedio con una rete integrata che sia munita di serbatoi idropneumatici ubicati uno su ogni sommità collinare ed uno o più serbatoi dello stesso tipo posti a tutela dell’area pianeggiante.

 

Fig. 3 = Schema di rete di distribuzione in territorio collinare

 

Come risulta dalla planimetria schematica della figura N. 3 allegata, le condotte longitudinali di rete di piccolo diametro si dirameranno dal serbatoio di sommità a raggiera e seguendo le linee di massima pendenza di ogni collina mentre saranno previste in orizzontale le fasce di stabilizzazione della pressione nelle aree più basse composte, come già spiegato, da condotte di grande diametro per la chiusura delle varie maglie. Anche in questo caso troveranno conferma le ottime caratteristiche della rete integrata che consentiranno, pur in presenza di un territorio così difficile, di realizzare una vera e propria modellazione della superficie piezometrica perfettamente congruente con il suolo di cui segue la complessa configurazione plano-altimetrica.
Molto interessante risulta l’adozione della rete integrata nei grandi e grandissimi agglomerati urbani con notevoli dislivelli altimetrici ma lieve pendenza del suolo e quindi con grande estesa delle aree da servire. In tale evenienza, distribuendo i serbatoi idropneumatici e le annesse fasce di stabilizzazione uniformemente in tutta l’area e ad un dislivello molto limitato uno dall’altro, pari ad esempio a soli 20 metri, é possibile operare con continuità una regolazione fine della superficie piezometrica della rete con ottimi risultati di gestione.
Se, come ripetutamente dimostrato, la rete integrata risulta particolarmente adatta alla alimentazione idrica dei territori altimetricamente variegati, essa si dimostra valida, con una sola riserva, anche in caso di territori pianeggianti. La grande elasticità di esercizio che deriva dall’abbinamento tra serbatoi idropneumatici e pompe a velocità variabile utilizzati secondo le modalità quì riportate, unitamente ad una oculata ubicazione dei serbatoi stessi nel baricentro delle zone abitate dove sono concentrati i maggiori consumi idrici o comunque nelle zone dove si vuole tener sotto controllo la pressione di esercizio, ubicazione in questo caso resa possibile dalla planarità delle aree da servire, conferiscono alla rete integrata dei territori pianeggianti notevoli vantaggi che si aggiungono a quelli elencati per le aree collinari e che sono dati soprattutto dalle ancora più avanzate possibilità di regolazione del pompaggio che dette reti consentono. Resta da sciogliere la riserva rappresentata dalle perdite di carico accusate dalle condotte adduttrici che alimentano i serbatoi idropneumatici il cui ammontare può risultare eccessivo e far propendere, nelle aree pianeggianti di cui si discute, per soluzioni tradizionali basate sulla adduzione dell’acqua tramite la stessa rete magliata e quindi con eliminazione delle adduttrici stesse.
In definitiva si può affermare che la rete integrata che forma l’oggetto della presente nota si presta all’alimentazione idrica di qualsivoglia territorio essendo sufficiente un’attenta ubicazione dei serbatoi idropneumatici e delle fasce di stabilizzazione per ottenere ottimi risultati sia per quanto riguarda le spese energetiche di pompaggio in quanto é possibile graduare in continuità la prevalenza delle pompe, sia per il contenimento delle perdite occulte reso possibile dalla riduzione notturna della pressione di rete, sia per le minori spese di manutenzione della rete che può lavorare sempre a pressioni contenute ed infine nella corretta pressione di consegna dell’acqua all’utenza essendo sempre possibile graduarla in funzione dei risultati che si vuole ottenere. Le sue caratteristiche di esercizio la rendono particolarmente adatta a risolvere i gravi problemi che nascono quando il territorio da servire è altimetricamente variegato.

7) INTEGRAZIONE DELLE RETI ESISTENTI

Nei capitoli precedenti si è illustrata una metodologia innovativa per la costruzione “ex novo” di acquedotti in territori comunque disposti e particolarmente per quelli ad andamento altimetrico variegato.
Nella reale situazione del rifornimento idrico delle nazioni evolute, si rileva come sia molto raro dovervi costruire nuovi acquedotti mentre sussiste un sentito bisogno di sistemare un gran numero di quelli esistenti che, per le ragioni più disparate, accusano i gravi difetti di esercizio di cui si é ripetutamente discusso. Il caso più frequente é quello di servizi idrici, soprattutto se relativi a territori vasti e difficili da alimentare, che sono derivati da una serie d’interventi succedutisi disordinatamente attraverso gli anni per seguire l’evolversi della richiesta idrica. Alcune volte, é stata la scarsa disponibilità economica in fase di realizzazione a provocare le gravi anomalie di costituzione degli impianti.
In tutti questi casi l’adozione della metodologia quì propugnata consente di razionalizzarne le esistenti reti di distribuzione senza modificare la loro costituzione di base. Si tratterà semplicemente di aggiungere al loro interno i serbatoi idropneumatici con le relative fasce di stabilizzazione ubicati in posizione opportuna e di modificare il sistema di sollevamento ed adduzione dell’acqua tramite installazione di pompe a velocità variabile, annesse condotte adduttrici ed impianto di telecomando e telecontrollo, il tutto in ottemperanza alle indicazioni fornite ai capitoli precedenti.
Si fa notare come le fasce stabilizzatrici della pressione da inserire in rete e che dovrebbero svilupparsi, come precedentemente indicato, in orizzontale, possano anche seguire un andamento altimetrico qualsiasi purché ognuna di esse ritorni in quota in corrispondenza di tutte le sue intersezioni e collegamenti con le condotte longitudinali, essendo la condizione sufficiente perché esse conservino la loro funzionalità di base. Questa possibilità facilita la esecuzione delle fasce stabilizzatrici tutte le volte che, sopratutto nelle aree già servite d’acquedotto come quelle di cui si parla, la situazione dei luoghi imponga tracciati che divergono rispetto alle curve di livello prestabilite salvo poi risalire o discendere in vicinanza e parallelamente alle condotte esistenti fino a realizzarne il collegamento esattamente in quota.
Qualora le condotte longitudinali di rete esistente che corrono lungo le linee di massima pendenza del suolo risultassero sovrabbondanti, dovrebbero esservi inserite delle valvole tarabili di riduzione per arrivare, nei casi estremi, alla loro chiusura totale.
Dall’insieme di opere descritte si otterranno risultati notevoli prima tra tutti la completa modellazione della superficie piezometrica di funzionamento che ovvierà al difetto principale e cioè alla inadeguata pressione di consegna dell’acqua.
In definitiva gli interventi di sistemazione di acquedotti esistenti che gli aumentati costi di gestione e le difficoltà di reperimento d’acqua rendono sempre più pressanti e diffusi, costituiscono un vasto settore di applicazione delle metodologie quì propugnate.
Da rilevare come l’inserimento delle nuove opere in un abitato sia facilitato dal fatto che esse non contemplano manufatti fuori terra ma solo condotte di adduzione e serbatoi idropneumatici la cui ubicazione ideale è nel sottosuolo e quindi senza problemi di impatto ambientale. Ben diversa e, ad avviso di chi scrive tecnicamente errata, la soluzione molto spesso adottata per ottenere gli stessi risultati mediante edificazione di serbatoi pensili. La loro presenza nelle città, oltre all’ingombro di opere alte una trentina di metri, comporta, dal punto di vista idraulico, risultati di esercizio completamente diversi da quelli auspicabili e cioè una piezometrica fissa per qualsivoglia richiesta idrica dell’utenza il che significa contravvenire ad un regola fondamentale di corretto esercizio. Essa provoca inoltre, per i consumi minimi, lo sfioro di rilevanti volumi della sempre più preziosa acqua resi necessari per riportare la piezometrica al valore prefissato.

8) CONCLUSIONI

Le difficoltà ed i poco confortanti risultati di esercizio, primo tra tutti la persistenza di perdite occulte elevatissime, fanno annoverare gli acquedotti a servizio delle aree montane, collinari o comunque ad andamento altimetrico molto vario, tra i più difficili da realizzare e gestire.
Nell’articolo, dopo un’accurata disamina dei difetti presenti nei sistemi acquedottistici in tali casi comunemente adottati, si descrive una rete di distribuzione di nuova concezione, basata essenzialmente sull’abbinamento tra pompe a velocità variabile e serbatoi idropneumatici ed opportunamente definita “integrata” in quanto si adatta perfettamente al territorio servito. Nell’articolo si dimostra come essa sia atta ad effettuare una corretta ed economica alimentazione idrica di territori aventi una qualsivoglia configurazione altimetrica ma particolarmente di quelli caratterizzati, appunto, da notevoli dislivelli del suolo. Sono illustrate, con l’ausilio di schemi e profili piezometrici, le caratteristiche costruttive e di esercizio delle opere mettendo in risalto i vantaggi ottenibili e resi ancora più evidenti dal raffronto tra rete integrata e reti tradizionali.
Viene messo in evidenza come la nuova metodologia possa trovare un utilissimo impiego anche nella razionalizzazione di reti di distribuzione esistenti e funzionanti, soprattutto in aree altimetricamente variegate, in modo anomalo.
La dimostrazione, presente alla fine dell’articolo, che le opere proposte sono atte a svolgere un ruolo fondamentale anche per l’alimentazione di territori pianeggianti, non può che far crescere l’interesse per gli innovativi schemi idrici proposti anche se meramente immaginari e quì indicati al solo scopo di promuovere la ricerca di soluzioni valide di problemi così importanti e a tutt’oggi mai risolti come sono quelli evidenziati.

Bibliografia

– M. Meneghin – Il serbatoio idropneumatico – L’ACQUA n. 2/2003

– M. Meneghin – L’utilizzazione delle elettropompe a velocità variabile negli acquedotti – L’ACQUA n. 6/2004

– M.Meneghin – Fabbisogno, consumi, portate e perdite nella pratica di esercizio delle reti di distribuzione d’acqua potabile a sollevamento meccanico – L’ACQUA n. 4/1999

– M. Burin – Le réservoir hydropneumatique de Chantilly – Tecnique e Sciences Municipales – Mars 1969

– J.Cheron – Resérvoir pression de grande capacité – T.S.M. L’Eau octobre 1988

 

aggiornato novembre 2005