GRANDE SERBATOIO SOTTERRANEO PER L’ISOLA D’ELBA – UN VALIDO ESEMPIO REALIZZATO A COMO

Da alcuni anni il sottoscritto è impegnato a promuovere la costruzione di un grande serbatoio sotterraneo allo scopo di portare a soluzione l’annoso problema del rifornimento idropotabile dell’Isola d’Elba attualmente soggetto a possibili crisi sopratutto estive dovute alla dipendenza dalle fonti della Val di Cornia poste nel continente e ad inconvenienti di tipo sanitario dati dalla presenza nell’acqua distribuita ai cittadini di sostanze nocive per la salute degli utenti e cui si  deve rimediare mediante costosi gtrattamenti. Come risulta dal progetto di massima, visibile in questo sito, l’opera proposta consiste in una galleria interamente scavata nella roccia e nella quale immagazzinare e conservare le acque, particolarmente abbondanti fuori stagione, allo scopo di poterne disporre nel periodo estivo normalmente caratterizzato da limitata piovosità e quindi da impoverimento delle fonti degli acquedotti. Si tratta di una soluzione semplice e di sicura efficacia ma che , nonostante i pareri nettamente positivi espressi da eminenti studiosi e da tecnici esperti nei servizi idrici, non trova quell’accoglienza che essa meriterebbe.
Allo scopo si ritiene interessante esaminare quali risultati siano stati recentemente ottenuti dalla esecuzione e gestione di un’opera del tutto simile a quella in argomento e cioè la costruzione dell’impianto di trattamento dell’acqua del lago di Como onde poterla utilizzare a scopi potabili. In tale città si è infatti pensato che, anziché occupare in superficie aree pregiate del territorio urbano, fosse preferibile scavare la roccia ed ubicare la mastodontica opera interamente nel sottosuolo ottenendo, come risulta da uno stralcio di una relazione redatta dall’Ente gestore che si allega, notevoli ulteriori benefici.
Da rilevare come la situazione dell’Elba, vuoi per le determinanti caratteristiche di insularità vuoi per la sua vocazione essenzialmente turistica, sia ancora più indicata di Como al trasferimento nel sottosuolo della opere ingombranti che, se realizzate in superficie, creerebbero notevoli inconvenienti per il bellissimo e relativamente esiguo territorio elbano. Ed ecco lo stralcio conforme della relazione

La Potabilizzazione in Caverna
delle acque del Lago di Como

ACSM Spa è una società da sempre all’avanguardia nell’applicazione delle migliori tecnologie sugli impianti di pubblica utilità gestiti. Un esempio, unico al mondo, è l’impianto in caverna di potabilizzazione delle acque del Lago di Como, supervisionato da Movicon.
L’indiscussa star della storia recente di Acsm spa è La caverna nella quale si trova l’impianto di potabilizzazione del Lago di Como. Quando erano ancora in corso i lavori, alle pendici del Monte Baradello avevano già fatto tappa centinaia fra tecnici e curiosi. Adesso che l’impianto è pronto e a regime, si fa fatica a soddisfare le richieste di tutti i visitatori. La media è di 200 persone la settimana, con una netta prevalenza di alunni, studenti delle superiori, universitari. Nessun dubbio che sia un’opera di grande suggestione. Una via di mezzo fra l’epica pionieristica e l’avanguardia tecnologica.
Nel nostro Paese non ci sono precedenti. Dilatare un circoscritto rifugio anti-aereo che risaliva ai tempi della guerra sino a potervi ospitare un impianto gigantesco in grado di raddoppiare la precedente capacità di trattamento (si è passati dai 300 ai 600 litri al secondo) è stato davvero un salto in avanti rispetto alla cantieristica e all’urbanistica italiana che, finora, sottoterra, ci aveva infilato quasi esclusivamente strade e parcheggi. Prima servivano gli stivaloni (per il fango) adesso basta un elmetto giallo (un gadget più che una reale esigenza di sicurezza) per penetrare il tunnel in cui è stata ricavata la centrale, un dedalo di condotte che consegna l’acqua pescata nel lago ai vasconi e a tre distinte fasi di trattamento.La caverna ha calamitato anche l’attenzione delle telecamere eccellenti della Rai che al tunnel dell’acqua ha dedicato un servizio nella trasmissione SuperQuark di Piero Angela “Da Platone ai norvegesi Orchi e tenebre”. 
Ma la caverna nasce con il mito su cui si fonda gran parte del pensiero occidentale. Quello in cui Platone immagina una realtà fittizia, in cui vediamo le ombre della realtà e non la realtà stessa. L’idea di scavare nella montagna la nuova centrale di potabilizzazione di ACSM nasce sulla spinta di una riflessione urbanistica e tecnologica. Restituire alla città un pezzo di città e ridurre a zero l’impatto visivo e ambientale di una centrale che è un groviglio di tubi e infrastrutture metalliche. Sono risultate indispensabili le competenze delle aziende che hanno partecipato all’impresa, comprese le due ditte specializzate norvegesi che hanno scavato dalla roccia le gallerie. Nel cantiere si sono cimentate la Selmer, la Degremont Italia, la Nessi & Majocchi, la Rini, la Sintertec, la SguasseroN. Da primato anche i tempi di esecuzione, che hanno richiesto solo due anni per la realizzazione, cosa non da poco in un Paese spesso abituato a cantieri dai tempi indefinibili. La firma sul prestigioso progetto è di Fernando De Simone, considerato uno dei massimi esperti a livello internazionale in operazioni del genere.

I numeri dell’impianto unico nel suo genere
35 mila i metri cubi rimossi per formare il tunnel (il materiale è stato riconvertito in manutenzioni stradali). Fra i 15 e i 20 metri la larghezza variabile dei tunnel. 15 metri l’altezza massima. 16 milioni di metri cubi la capacità di trattamento annua (600 litri al secondo, rispetto ai 300 litri al secondo della stazione di potabilizzazione preecedente). 2 anni i tempi di esecuzione dell’intervento.

La Sicurezza della Caverna
La crisi internazionale determinata dall’attacco delle Due Torri di New York registra un ulteriore aggravamento. Gli impianti di ACSM Spa, come tutti quelli delle società chiamate ad assicurare servizi collettivi o comunque di pubblico interesse, sono stati definiti, per loro stessa natura, obiettivi sensibili, cioè strategici per un’eventuale offensiva terroristica e dunque presidi da proteggere con misure speciali. I controlli, da sempre rigidissimi, sono stati ulteriormente rafforzati, nel quadro di un piano complessivo messo a punto assieme a prefettura e questura. L’azienda, per accentuare garanzie già assicurate sin dall’insediamento della nuova centrale di potabilizzazione (peraltro resa meno vulnerabile dal fatto stesso di essere interamente collocata in una caverna), ha diluito le visite e ridotto il percorso all’interno dell’impianto. Durante riunioni con i massimi livelli istituzionali cittadini, è stata anche ventilata l’ipotesi di sospendere il programma di Tognocchi, rinviandolo di qualche mese: non certo perché sussistano rischi per i bambini bensì per ridurre a zero il rischio di intrusioni.

L’impianto di potabilizzazione
L’impianto è stato alloggiato in una caverna scavata nella roccia dal volume complessivo di 35.000 m³. Le dimensioni della caverna principale sono: 150x18h 8÷16mt. Dall’impianto di potabilizzazione si alimentano con ripompaggio le reti principali nell’Acquedotto di Como facenti capo ai rispettivi serbatoi terminali:
· COMO CENTRO, Serbatoio Baradello, quota 265
· COMO EST, Serbatoio Refrec, quota 310
· COMO SUD, Serbatoio Doss, quota 325
…omissis…

Inutile indicare ora i vantaggi che potrebbero derivare al servizio idrico dell’Elba qualora venisse costruito il serbatoio sotterraneo, vantaggi del resto visibili in questo sito. E’ invece preferibile raffrontare tra di loro le due opere rispettivamente comasca ed elbana.
Da rilevare innanzitutto le notevoli dimensioni della caverna di Como che raggiungono i 20 metri di larghezza ed i 15 m di altezza nel mentre la sezione trasversale del serbatoio elbano è, per tutta la sua lunghezza, rappresentata da una circonferenza di soli 10 metri di diametro. Dal confronto l’opera elbana risulta di gran lunga la più semplice da costruirsi specialmente per la possibilità di impiego delle enormi macchine operatrici automatiche di uso normale nello scavo ed il rivestimento interno delle gallerie circolari che invece non si sono potute impiegare a Como. L’opera è inoltre la meno impattante nei riguardi del massiccio roccioso nel quale essa và inserita, tenuto anche presente che il suo tracciato non è fisso come quello della caverna comasca ma può svolgersi in qualunque direzione a seconda delle caratteristiche del territorio da attraversare essendo totalmente priva di vincoli planimetrici.
Un ulteriore elemento che gioca a favore dell’Elba è dato dal materiale di risulta dello scavo della galleria che, così come accaduto a Como, anche nell’Isola troverà un utile impiego ma sarà qui favorito dal fatto che si tratta di ottimo granito. Rendere disponibili in un’isola sabbie, ghiaie e blocchi di granito in gran quantità e a costi prossimi allo zero, rappresenta un importante beneficio secondario di cui occorre tener presente nella determinazione dei costi da preventivare per la realizzazione del serbatoio-galleria.
In conclusione dall’esperienza della città di Como che, nonostante le maggiori difficoltà costruttive, è riuscita a ricavare grandi vantaggi dall’aver trasferito nel sottosuolo roccioso una imponente opera che fino ad allora si trovava in superficie, si possono dedurre ulteriori conferme per la costruzione del serbatoio sotterraneo dell’Isola d’Elba, conferme questa volta desunte da elementi reali come sono la costruzione e la gestione di un manufatto del tutto simile a quello proposto per l’Isola d’Elba.
Un ulteriore importante risultato cui potrebbero portare queste poche righe sarebbe quello di indurre i responsabili del servizio idrico elbano ad effettuare, così come stanno facendo molte altre personalità, una visita all’impianto del lago di Como in modo da rendersi conto “de visu” dei vantaggi ed anche dell’assenza di problemi di un certo rilievo sia in fase di costruzione e sia durante il suo esercizio

AVANTI

SERBATOIO PER L’ISOLA D’ELBA

Un servizio fondamentale per qualsivoglia centro abitato ma che diventa essenziale per un territorio a preminente vocazione turistica come l’Isola d’Elba è quello del suo corretto rifornimento idropotabile. In questo settore l’Isola deve invece lamentare inconvenienti gravi quali la scarsità delle fonti durante l’estate che comporta frequenti interruzioni del servizio con alimentazione idrica di tipo turnario, e la presenza nell’acqua di sostanze inquinanti che ne compromettono l’uso a fini potabili. Le ragioni vanno ricercate nella precarietà della fornitura dalla Val di Cornia sita nel continente la quale, a causa della vastità del territorio continentale ed insulare servito, non è più in grado di produrre acqua in qualità e quantità atta a soddisfare il fabbisogno. Particolarmente grave è l’inquinamento ad opera del boro e dell’arsenico  presenti  nell’acqua in quantitativi superiori alle percentuali ammesse dalle vigenti leggi e cui si è recentemente rimedianto tramite opportuni trattamenti operati in terraferma e che hanno comportanto ulteriori pesanti aumenti nel costo complessivo di produzione dell’acqua potabile .
E’ fuori di dubbio che la soluzione ottimale di un problema determinante come quello indicato sarebbe quella che riuscisse a soddisfare le richieste idriche dell’Isola in maniera autonoma, visto e considerato che le acque di pioggia che vi precipitano durante l’annata sarebbero sufficienti allo scopo qualora, invece di essere lasciate defluire inutilizzate al mare come accade attualmente, potessero essere raccolte ed immagazzinate per essere utilizzare durante il periodo estivo di rilevante consumo idrico e di scarsa producibilità delle sorgenti e dei pozzi sia locali che della Val di Cornia. Gli studi condotti in questo senso vertono sulla realizzazione di due laghi artificiali mediante dighe di ritenuta da costruirsi a Patresi e Pomonte oppure nella realizzazione di 21 laghetti sparsi in tutta l’Isola  ed aventi in ciascuna soluzione esecutiva il necessario volume totale di invaso di 2.000.000 di mc, ma sono molti e di varia natura i motivi che ne sconsigliano la attuazione, primo fra tutti il grave danno ambientale che ne deriverebbe. Anche le altre soluzioni come la produzione di acqua potabile mediante desalinizzazione di quella di mare o la depurazione delle acque reflue della fognatura presentano inconvenienti gravi per cui , anche se in un futuro prossimo venisse effettivamente  realizzato un desalinizzatore, si otterrebbero  risutati disastrosi per i costi elevatissimi e soprattutto  perchè la caratteristica fondamentale della  desalinizzazione cosiste in una produzione costante per l’ingtera annata mentre il fabbisogno degll’utenza elbana è caratterizzato da grandissima escursione di portata  cui bisognerebbe comunque porre rimedio con l’aggiunta di un grandissimo serbatoio dello stesso tipo di quello che costituisce la soluzione che viene qui proposta.
La conclusione cui si perviene non può che derivare da una regola attualmente molto seguita nei paesi nordici e che così recita: porre nel sottosuolo le opere che in superficie non possono essere tollerate per i danni che provocano. Ciò significa evitare di occupare gli spazi belli e preziosi dell’Elba ma ricavare invece il grande serbatoio nel suo sottosuolo. Dall’esame della conformazione del territorio ovest dell’Isola costituito dal massiccio del monte Capanne dal quale si diramano con disposizione a raggiera numerose vallette e compluvi normalmente asciutti ma destinati a raccogliere e scaricare a mare le acque di pioggia che statisticamente quì precipitano con maggiore intensità che nel resto dell’Isola, risulta che l’accumulo non dovrebbe essere concentrato in una area limitata come accade ad esempio con i laghi artificiali, ma che esso dovrebbe invece svolgersi con la massima estesa longitudinale possibile al fine di raggiungere tutte le vallette, nessuna esclusa, e poter intercettare tutti i corsi d’acqua.

Veduta prospettica della parte ovest dell’Isola d’Elba con il gtracciato del serbatoio/galleria

Tale risultato può essere raggiunto mediante un’opera singolare ma non nuova nel settore idropotabile e che, sotto molteplici aspetti, si adatta splendidamente al territorio elbano in quanto, oltre a risolvere il problema idrico, consente anche di sfruttare alcune delle sue caratteristiche fondamentali per ottenere rilevanti economie costruttive e di esercizio. Si tratta di una galleria del tutto simile a quelle stradali ed avente un diametro di 10 m che, circondando alla base e per 360 gradi il citato massiccio del Monte Capanne con il percorso circolare lungo circa 25 Km di cui al disegno allegato, attraversa o sottopassa tutti i compluvi costituendo il richiesto volume di invaso di 2.000.000 di mc in grado di conservare per lungo tempo l’acqua potabile al fresco e al buio.
Ed ecco quali possono essere i vantaggi secondari, ma non per questo da sottovalutare, dell’opera. Innanzitutto è previsto che lo scavo della galleria, come sempre succede nella esecuzione di lavori del genere, finisca per richiamare al suo interno l’acqua delle falde presenti nel sottosuolo del M. Capanne, presenza confermata dalle numerose fonti naturali ivi esistenti. Ebbene tali falde potranno rappresentare un importante apporto di acqua naturalmente potabile e particolarmente abbondante durante i periodi piovosi. Altro vantaggio da tener presente è la qualità del materiale roccioso attraversato con gli scavi sotterranei, il quale, essendo per la totalità costituito dal meraviglioso granito elbano, non solo darà tutte le necessarie garanzie per la stabilità delle opere durante e dopo la esecuzione dei lavori, ma fornirà grandi quantitativi di prodotto lapideo di risulta che, convenientemente sfruttati, potranno contribuire a coprire in gran parte i costi di costruzione della galleria. E’, a tale riguardo. da segnalare come alla data attuale le Cooperative di cavatori che operano a S. Piero siano costrette ad importare il granito dalla Cina viste le difficoltà imposte dalle vigenti leggi alla coltivazione delle cave all’aperto che tanti danni provocano all’ambiente. Per ovviarvi e consentire la prosecuzione o forse l’incremento di tale attività si propone di organizzare lo scavo di alcune parti del serbatoio/galleria in modo da potervi ricavare i blocchi di granito atti alla descritta lavorazione. La parte rimanente di materiale di risulta, opportunamente frantumata e vagliata, potrà trovare svariati ed utili impieghi quale inerte da calcestruzzi, quale sabbia per il ripascimento di spiagge erose dalle mareggiata o per l’ampliamento delle altre, per la costruzione di rilevati stradali e per piazzali e parcheggio o, infine, per ripristinare il territorio nei punti danneggiati dalle cave coltivate negli anni passati.

Planimetria della parte ovest dell’Isola dd’Elba con tracciato del serbatoio/galleria

Un altro punto a favore del serbatoio/galleria è la possibilità di alimentare, grazie alla sua elevata quota altimetrica, gran parte degli agglomerati urbani direttamente a gravità evitando l’uso delle costose pompe di sollevamento. A tale riguardo occorre anche segnalare come la rete di adduzione che attualmente collega tra di loro i vari acquedotti facendo percorrere all’acqua della Val di Cornia tutta l’Isola in senso longitudinale da est a ovest, è in grado di essere alimentata anche in senso contrario cioè da ovest verso est e quindi distribuire seduta stante e senza necessità di grandi opere acquedottistiche tutta l’acqua raccolta e accumulata nel serbatoio/galleria.
Infine l’accumulo in serbatoio di notevoli volumi d’acqua delle piogge effettua una laminazione delle piene contribuendo a lenire i danni che vengono spesso provocati da esondazioni ed allagamenti a seguito di eventi piovosi particolarmente intensi.
Resta comunque confermato che il risultato più importante che si ottiene delle opere in oggetto è quello di consentire all’Elba di alimentarsi autonomamente, evitando in toto il ricorso alle costose e precarie forniture della Val di Cornia, forniture che potrebbero improvvisamente venire a mancare per molteplici ragioni tra le quali figurano le pessime caratteristiche chimiche dell’acqua che possono comportare in qualunque momento il divieto del suo uso a fini potabili, l’impossibilità, insita negli impianti della Val di Cornia, di far fronte alla totalità degli aumentati consumi idrici ed infine, la eventualità, tutt’altro che remota, che la condotta sottomarina di collegamento con il continente, attualmente in precario stato, possa rompersi.
Se si considera che tra breve tutti i servizi idrici di una vasta zona, comprensiva anche dell’Elba, definita ambito ottimale ( ATO ), saranno svolti da un grande organismo pubblico che andrà a realizzare il Serivizio Idrico Integrato, si comprende che la presenza di un grande serbatoio di estremità come quello in oggetto e per giunta ubicato in una posizione decentrata come è l’Isola d’Elba rispetto al rimanente territorio ATO, costituisca un fattore di grande sicurezza per il servizio idropotabile dell’intera regione. Il collegamento con il continente tramite la esistente condotta sottomarina, attualmente essenziale per il rifornimento idrico elbano, verrebbe allora declassato diventando una riserva da utilizzare solo eccezionalmente per eventuali interscambi di portata nei due sensi Isola d’Elba-Continente e Continente-Isola d’Elba in caso di necessità impreviste.
Infine il problema, importantissimo, del costo delle opere.
La costruzione di una galleria come quella indicata è valutato in ben 150 milioni di euro. Dalle stime effettuate da una società esperta in lavori del genere risulta però che la presenza di un materiale straordinario come il granito che compone il massiccio del Capanne consentirebbe, con una efficiente organizzazione del lavoro, coprire gran parte di tale importo.
In definitiva l’opera che nella presente breve relazione si propone di eseguire, cioè la costruzione di un serbatoio sotterraneo per acqua potabile da 2.000.000 di mc. di capacità utile, si ritiene costituisca la soluzione ottimale del problema idrico elbano in quanto essa è atta , senza provocare danno alcuno all’ambiente, a dotare l’Isola di un corretto servizio idrico del tutto autonomo ed autosufficiente nel mentre le spese per la esecuzione dei lavori potrebbero essere in buona parte coperte dalla utilizzazione del materiale di risulta dagli scavi.
Ulteriori indicazioni possono essere dedotte dal questo stesso sito dove figura il progetto di massima completo di relazione e disegni esplicativi.

La descrizione del grande serbatoio/galleria per l’Isola d’Elba termina con l’indicazione che l’intera opera potrà essere costruita per stralci successivi tutti funzionale ed atti a dilazionare la spesa negli anni ma riuscendo a risolvere gli attuali problemi estivi fin da una prima tratta di lunghezza di circa  un chilometro necessaria e sufficiente a tale scopo

INDIETRO AVANTI

L’UTILIZZO DEGLI SPAZI SOTTERRANEI PER LA MITIGAZIONE DELL’IMPATTO AMBIENTALE (INGLESE ED ITALIANO)

 

DI SEGUITO L’ARTICOLO IN ITALIANO

THE USE OF UNDERGROUND SPACES FOR ENVIRONMENTAL
PROTECTION PURPOSE
Dott. Luca Soldo (*)
Ing. Pierpaolo Oreste (*)
(*) Dipartimento Georisorse e Territorio, Politecnico di Torino.
Abstract
During this century numerous environmental damages have dramatically reduced the quality of the
environments where people nowadays live and will live in the future. From this point of view no place can be
considered safe. Today some obsolete technologies used in poorer countries for civil and industrial purposes,
added to the great environmental pressure due the overpopulation in most of them, cause, everyday, huge
damage to the natural context.
This damage is often caused by people or states who are enable to choose environmental friendly techniques due
to an inadequate cultural approach or some blind economic reasons. There is no doubt that such a reality implies
a huge economic loss of money. Economists today suggest the necessity of computing this economic
disadvantage, by considering the feasibility evaluation of all the actions that can change the environment; a
correct economic analysis should compute the “value” of the environmental goods that can be destroyed for
different technical solutions.
Numerous advantages (table A) are specifically related to the use of underground spaces (table B);
environmental reasons can also be suggested. The underground itself seems able to protect outside spaces and,
at the same time, to host environmental protection dedicated activities such as waste storage or treatment plants
and hydroelectrical power plants. If it is true that the excavation of underground spaces often requires a great
amount of money for the owners, this problem should not necessary limit such a technical solution because of the
environmental benefits (or from another point of view, the economic benefits) that could be obtained.
Table A. Types of benefits from the use of underground spaces.
· Improvement in the territorial administration
· Outside environment isolation from active underground factors
· Underground structure and plant isolation from active outside factors
· Economic savings
· Innovation in the environmental field
Table B. Examples of use of underground spaces through the world.
· Large technological structures (electric power generation structures, telecommunication stations, research
centers, disposal and water treatment plants, large deposits, hydro-power tunnels, waste treatment plants, waste
disposal plants, industrial plants, underground oil storage voids, service tunnels, etc.)
· Transportation structures (for railways, motorways, in urban or extra-urban areas, for car-parks, for pedestrians,
etc.)
· Civil structure for working, cultural, recreative and housing uses
· Military structures
· Underground mining spaces (quarry and mines, plants for tunnels and underground voids)
Environmental Impact Evaluation and economic analysis should therefore proceed side by side; all the useful
data (even though collected with other purposes in the project) must be furnished to the experts involved in this
analysis. Two lists of impacts (negative and positive) related to the construction of undeground spaces and the
installation of inside plants, as recognized by the analysis of numerous case histories in Italy and abroad are
presented in this paper. It should be pointed out that only intrinsic impacts, related to the undergound spaces
themselves and not to the hosted plants are considered.

 

 

 

ARTICOLO IN TALIANO

1. Introduzione

Sempre più sovente si ricorre alla collocazione di numerose tipologie di infrastrutture entro spazi sotterranei.
Nella tabella 1 sono indicate tipologie di utilizzo degli ambienti sotterranei nel mondo (Dieci e Soldo, 1995):

 

La collocazione in sotterraneo è motivata da numerosi vantaggi, che possono essere ragruppati entro due categorie fondamentali (ITA Working Group n.13, in fase di stampa): – vantaggi diretti: sono correlati al posizionamento di una struttura in sotterraneo; l’utilizzo dello spazio sotterraneo può aggiungere valore ad un’opera (spesso ne permette la realizzazione altrimenti impossibile) in base ad alcune caratteristiche ad esso connesse riportate schematicamente nella tabella 2.
– vantaggi indiretti: sono correlati ai servizi offerti dalla struttura in quanto tale. In particolare l’analisi della tabella 2 evidenzia come l’utilizzo del sottosuolo possa rivelarsi particolarmente vantaggioso dal punto di vista della salvaguardia ambientale. Nell’articolo vengono sottolineati gli elementi di fondo che debbono essere considerarti laddove si desideri verificare oggettivamente la convenienza ambientale della collocazione in sotterraneo di un’infrastruttura. La verifica di impatto ambientale nel caso di opere in sotterraneo deve evidentemente considerare sia la cavità in quanto tale sia l’infrastruttura in essa collocata. Un primo nodo fondamentale che deve essere evidenziato è che gli ambienti in sotterraneo presentano la particolarità di essere contemporaneamente soggetto potenziale di impatto ed elemento di mitigazione (grazie alla barriera naturale costituita dal materiale geologico circostante la cavità). Quest’ultimo ruolo diviene ancor più evidente laddove l’infrastruttura ospitata sia eventualmente finalizzata alla salvaguardia ambientale o benefica in tal senso, come ad esempio nel caso di impianti per il trattamento delle acque reflue, di centrali idroelettriche o di discariche di rifiuti tossico-nocivi.

 

2. Interazioni tra ambiente ed opere in sotterraneo

Da quanto detto appare evidente come un’analisi dettagliata, nella quale vengano computati in termini economici i benefici di natura ambientale connessi all’uso degli spazi sotterranei, possa spesso permettere di ribaltare la prospettiva che vede assegnare all’opzione costruttiva in sotterraneo costi sensibilmente maggiori di quelli implicati nella collocazione dell’infrastruttura in superficie. La valutazione economica dei benefici ambientali è, però, ancora oggi un problema non risolto a causa della difficoltà insita nell’attribuzione di valori monetari a categorie difficilmente quantificabili quali, ad esempio, la “bellezza” di un paesaggio o di beni archeologici; anche variabili di natura socio-politica, funzioni del tempo e dello spazio, rendono complessa questa valutazione: all’ambiente possono essere attribuiti differenti “valori” in Paesi con condizioni economiche, culturali e sociali differenti. E’ auspicabile che i rapidi progressi in atto nella cosiddetta economia dell’ambiente possano presto permettere di realizzare analisi oggettive, affidabili ed univoche. In Italia la legislazione relativa è sostanzialmente quelle concernente gli Studi di Impatto Ambientale (S.I.A.) (tabella 3) e la conseguente Valutazione di Impatto (V.I.A.); in essa, seppur non vi siano riferimenti espliciti, è possibile desumere l’obbligo di assoggettare la realizzazione e l’utilizzo di un’opera in sotterraneo (gallerie, cavità e caverne) ad una procedura progettuale che tenga conto delle sue relazioni con l’ambiente. Và sottolineato come lo Studio di Impatto Ambientale debba considerarsi non un ostacolo bensì un importante elemento coadiuvante entro una pratica progettuale corretta; esso costituisce un punto di vista privilegiato, poichè, per la sua stessa natura, tende ad individuare ed analizzare tutte le problematiche connesse con un’opera nella loro complessità, sottoponendole a routine di studio particolareggiate nelle diverse fasi progettuali e verificando le interazioni fra esse. Perchè uno Studio di Impatto Ambientale venga realizzato correttamente è necessario rispettare due condizioni fondamentali:
– lo studio deve essere affidato ad un organismo specializzato non coincidente con la ditta di geoingegneria implicata nel progetto per ragioni di imparzialità di giudizio;
– coloro che realizzano lo S.I.A. debbono avere a disposizione tutti i dati raccolti dai geologi incaricati delle indagini per la determinazione dei parametri progettuali.

 

 

I benefici conseguenti alla realizzazione di una struttura in sotterraneo sono fruibili da:

– coloro che sono coinvolti direttamente con l’opera (committenza, utenti, ditta costruttrice, operatori durante la costruzione, enti politico-amministrativi responsabili);
– persone od entità socio-economiche che sono collegate direttamente od indirettamente agli effetti provocati dalla realizzazione dell’opera.
Per la valutazione dei benefici indirizzati al secondo gruppo, è necessario poter stimare, almeno approssimativamente, gli effetti sulla situazione sociale ed economica prodotti dalla realizzazione dell’opera e dal suo funzionamento (fattori correlati agli effetti esterni). Una tale valutazione risulta problematica e richiede lo studio di un grande numero di esperti su discipline che esulano dalle competenze tecniche del progettista dell’opera in sotterraneo. Come è già stato accennato, tali benefici (per esempio la riduzione di rumore, di inquinamento, di tempo perso per il congestionamento del traffico stradale conseguente alla realizzazione di strutture in sotterraneo) sono spesso difficilmente valutabili in termini monetari. Idealmente sarebbe auspicabile poter valutare ogni tipo di beneficio in termini monetari e dal punto di vista probabilistico (probabilità che si verifichino gli eventi studiati), in modo da poter scegliere tra le varie soluzioni quella che a pari grado di affidabilità risulti più economica. Questo tipo di analisi richiede, in prima istanza, l’individuazione delle interazioni fra l’opera realizzata e l’ambiente; l’elenco riportato nelle tabelle 4 e 5 è una sintesi di impatti potenziali (nodi di una matrice di impatto) ricavati dall’analisi di un’ampia bibliografia di case histories relativi alla realizzazione di opere in sotterraneo nel mondo.

3. Conclusioni

La collocazione in sotterraneo di numerose tipologie di infrastrutture può contribuire in maniera sostanziale almiglioramento della gestione territoriale dai punti di vista ambientale e sociale (oltre che permettere scelte infrastrutturali particolarmente vantaggiose). Per far sì che questa opzione venga considerata con maggior favore dalla Committenza è necessario proporre urgentemente protocolli di analisi delle implicazioni sociali ed ambientali che dimostrino, quanto più possibile oggettivamente, la sua redditività economica globale, che non deve essere, in questo caso, restrittivamente intesa come correlata al rispetto dei tempi e dei costi realizzativi. Una possibilità di notevole interesse è offerta in questo senso dai moderni Sistemi di Supporto alle Decisioni e, fra essi, deve essere rivolto particolare interesse all’Analisi Multi-Criteria.

 

 

4. Ringraziamenti

Si desidera ringraziare il Prof. S. Pelizza per i suggerimenti forniti durante la stesura del lavoro. La Ricerca è
stata realizzata con i Fondi erogati nell’ambito del “Progetto Strategico Gallerie” del CNR – Comitato 05.

 

 

5. Bibliografia

Cotecchia V. (1993) – Opere in sotterraneo: rapporto con l’ambiente. Atti del XVIII Congresso di Geotecnica
(AGI), Rimini

Godard J.P. (1994) – Economic and environmental benefits of use of underground space. Materiale didattico del
Master in Environmental Engineering with specialization in Mechanized Tunnelling, COREP (Politecnico di
Torino).
Godard J.P. (1994) – Underground structures in regional planning of cities. Proc. Congress “Underground
construction ’94”, Prague.
Habib P. (1992), Utilisation du sous-sol pour l’isolement des dechtes radio-actives. Atti del Conv. SIG “Grandi
opere in sotterraneo: motivazioni e promozione”, Milano.
ITA Working Group n.13 (in fase di stampa) – General considerations in assessing the advantages of using
underground space. Tunnelling and Underground Space Technology.
ITA Working Group n.13 (in fase di stampa) – Underground car parks: international case studies. Tunnelling
and Underground Space Technology.
ITA Working Group n.13 (1995) – Preliminary report on underground urban mass transit systems.
ITA Working Group n.15 (1994) – Etude des couts des infrastructures de transport ferroviaire en zones urbaine
et suburbane. Tunnels et Ouvrages Souterrains, n.125.
Kiyoyama S (1990) – The present state of underground crude oil storage technology in Japan. in Tunnelling and
Underground Space Technology, Vol. 5, N. 4, pp.343.349.
Nilsen B. (1994) – Main criteria for underground waste disposal. Materiale didattico del Master in Environmental
Engineering with specialization in Mechanized Tunnelling, COREP (Politecnico di Torino).
Ogata Y., Isei T. e Kuriyagawa M. (1990) – Safety measures for underground space utilization. Tunnelling and
Underground Space Technology, Vol. 5, n.3.
Peila D. e Pelizza S. (in fase di stampa) – Civil reuses of underground mine openings: a summary of International
experience. Tunnelling and Underground Space Technology.
Pelizza S. e Peila D. (1994) – Criteri per il progetto di depositi sotterranei per lo smaltimento di rifiuti tossici.
Meeting di Ing. Geotecnica, Milazzo.
Pelizza S. (1995) – De las minas a los tùneles. Atti del Conv. “El espacio subterraneo como geo-recurso”, Madrid.
Presbitero M. (1992) – Aspetti giuridici e di finanziamento pubblico. Atti del Conv. SIG “Grandi opere in
sotterraneo: motivazioni e promozione”, Milano.
Regione Lombardia (1994) – Manuale per la valutazione di impatto ambientale. Indirizzi per la realizzazione dello
Studio di Impatto Ambientale, Milano.
Roisin V. (1992) – Quelques asptects de la problematique de l’utilisation de souterrain. Atti del Conv. SIG
“Grandi opere in sotterraneo: motivazioni e promozione”, Milano.
Sterling R. e Carmody J. (1994), Underground space design. Underground Space Center, Departm. of Civil Eng.
and Mineral Eng., University of Minnesota.

5. Bibliografia

Cotecchia V. (1993) – Opere in sotterraneo: rapporto con l’ambiente. Atti del XVIII Congresso di Geotecnica
(AGI), Rimini.

IL SOTTOSUOLO COME VALIDA RISORSA NELLA RISOLUZIONE DELLA IMMINENTE CRISI IDROPOTABILE

Il sottosuolo per grandi accumuli iodrici

 

La crisi idrica che si profila ad un orizzonte non molto lontano sollecita soluzioni valide. Quelle che vanno oggi per la maggiore sono il risparmio dell’acqua disponibile e l’aumento della produzione delle fonti.
In tema di risparmio idrico alcuni dei provvedimenti sempre più spesso raccomandati sono fatalmente destinati ad ottenere risultati del tutto esigui. Infatti non si tiene presente un fattore determinante e cioè la diretta dipendenza delle perdite occulte degli acquedotti con la pressione di esercizio degli stessi che fa sì che, quand’anche la gran parte degli utenti praticasse una rilevante economia dell’acqua consumata, la minor portata delle condotte di rete finirebbe per incrementare la pressione e quindi le perdite annullandone in parte i benefici. A fronte dei risultati così modesti si devono rilevare i disagi per la popolazione ed il minor introito economico degli enti di gestione il cui bilancio deve comunque risultare in pareggio. Senza entrare in dettaglio in un argomento così vasto e complesso, si auspica che i futuri sistemi di approvvigionamento idropotabile siano invece in grado di fornire all’utenza l’acqua di buona qualità senza imporre limitazioni di consumo d inoltre senza dover ricorrere a sistemi speciali e costosi come ad esempio quello inerente la potabilizzazione di acque marine o di quelle reflue delle fognature. A tale scopo viene quì proposto un intervento di sicura efficacia e ancora sottovalutato e cioè il semplice accumulo in grandi e grandissimi serbatoi dell’acqua potabile prodotta in eccesso durante i periodi di bassa richiesta dell’utenza. Viene così resa possibile una buona compensazione plurimensile delle portate che può aggiungersi alla compensazione giornaliera generalmente adottata nella maggior parte degli acquedotti italiani con risultati totalmente diversi.

È ben noto che, sia nella producibilità delle fonti e sia nella richiesta di quel bene prezioso ed essenziale che è l’acqua, sussistono dei consistenti sfasamenti temporali dovuti alle forti escursioni di portata non solo delle fonti che normalmente alimentano gli acquedotti e cioè sorgenti, falde e corsi d’acqua soggette inevitabilmente alla aleatorietà del tempo atmosferico ma anche della richiesta idrica dell’utenza. I due fenomeni sono nettamente contrapposti in quanto è proprio quando difettano le fonti che aumentano le richieste facendo viepiù rilevare l’importanza dei grandi accumuli per la risoluzione dei problemi che vi si verificano.
Una modalità molto efficace di accumulo di rilevanti volumi idrici è quella dei bacini artificiali d’alta montagna che nei tempi andati erano ottenuti tramite dighe di ritenuta. Si tratta però di opere che non si possono più realizzare per molteplici ragioni tra cui la mancanza di aree adatte, i danni ambientali che ne derivano, le perdite d’acqua causate dall’evaporazione, il progressivo interrimento dei bacini, la possibilità di franamento delle sponde ecc. ecc.
Le altre possibilità di realizzare grandi accumuli in superficie si limitano ai serbatoi in cemento armato ma, pur con il progressivo miglioramento della tecnica edilizia, l’invaso massimo che si riesce a realizzare in questo modo può essere stimato in circa 200000 mc che sono del tutto insufficienti per gli scopi di cui si discute.
Esaurite le usuali possibilità di realizzare rilevanti invasi idrici nel terreno non resta che passare al sottosuolo che presenta in tale campo favorevolissime condizioni. Si noterà come sono molti i settori del moderno vivere civile che hanno trovato sottoterra la condizione ideale per ubicarvi importanti sevizi. Tale tecnica ha permesso di dotare le grandi città delle ferrovie metropolitane che rappresentano senza dubbio il miglior sistema di trasporto urbano. Nel campo dello stoccaggio di materiali e mezzi d’opera eccellono i garage per autovetture ed i magazzini anche di grandi dimensioni ed i locali accessori in genere. Nelle grandi metropoli sono molti gli esempi di ubicazione nel sottosuolo di locali a usi multipli. Tra tutti si segnala quella sorta di tempio dello shopping su quattro livelli che è il modernissimo Forum des Halles di Parigi con negozi, ristoranti, piscina, giardini, fontane e la più grande stazione metropolitana della capitale francese. Al centro vi si trova addirittura una piccola piazza con monumento centrale: il tutto è stato ottenuto scavando l’area un tempo occupata dai magazzini generali.

Il Forum des Halles di Parigi: una piazza con negozi, piscine, ristoranti interamente ricavata nel sottosuolo

Nel campo dei servizi idrici non si possono tralasciare gli interventi posti in essere sotto terra dalla città di Como per trasferirvi gli impianti di stoccaggio e trattamento delle acque potabili e di quelle di fognatura liberandone totalmente il territorio urbano.

E’ da rilevare come la caratteristica di vitale importanza degli strati profondi della terra sia quella di costituire da sempre l’ideale mezzo di accumulo di ingentissimi volumi d’acqua che, raccolti a seguito degli eventi atmosferici, vengono successivamente e progressivamente restituiti al suolo per alimentare fiumi, falde, sorgenti ecc, in definitiva per consentire la sopravvivenza di piante, animali ed esseri umani. Accumularvi artificialmente rilevanti volumi d’acqua potabile, come viene proposto in questa nota, rappresenta pertanto la continuazione di un procedimento naturale con tutti i vantaggi che gli sono propri e che si rivelano particolarmente utili per la risoluzione della carenza idrica di cui si è detto.

Tra tutte le possibilità si cita in primo luogo una tecnica che sta dando buoni risultati è cioè la ricarica artificiale di falda consistente nell’immissione forzata nel sottosuolo di grandi volumi idrici durante i periodi di piogge intense allo scopo di poterne molto efficacemente usufruire in tempi ed in luoghi diversi ed anche molto lontani.

In secondo luogo, rinviando la trattazione della tecnica di ricarica di falda alle molte pubblicazioni degli specialisti della materia, si vuole specificatamente parlare di grandi bacini ricavati nel sottosuolo con diverse metodologie, ancora poco utilizzate ma dalle quali deriveranno in futuro, in maniera del tutto analoga, sicuramente dei grandi benefici.

Il primo esempio di grande bacino sotterraneo prende spunto dal lavoro del prof. Pier Gino Megale dell’Università di Pisa “USO DEGLI ACQUIFERI LOCALI PER LA REGOLAZIONE DELLE RISORSE IDRICHE DELL’ISOLA D’ELBA” visibile anche su internet , che è basato sulla realizzazione di un serbatoio sotterraneo da 2.000.000 mc di capacità utile tramite diaframmi di impermeabilizzazione che circondano la piana di Marina di Campo nell’Isola d’Elba mediante una tecnologia che potrebbe benissimo essere adottata in molti altri casi. Si riportano nel seguito ed in sunto le sue modalità d’uso e le possibilità offerte in particolari situazioni territoriali.

 

tracciato galleria serbatoio Elba
Veduta del serbatoio-galleria progettato per l’Isola d’Elba ma non realizzato

Sezione tipo del serbatoio – galleria per l’Isola d’Elba

Si verifica sovente che una vallata anche molto ampia sfoci nel mare essendo costituita da sponde impermeabili profonde sulle quali si sono depositati attraverso i secoli, grandi quantità di ghiaie o di materiali sabbiosi comunque permeabili e che si elevano verso l’alto fino a costituire delle grandi pianure. In tali luoghi, pur essendo presenti nel sottosuolo delle ricche falde alimentate da bacini imbriferi di grande estensione, non è possibile prelevarvi acqua per usi potabili in quanto vi si verifica l’invasione di acqua salata, nel mentre tutta l’acqua dolce che vi transita si scarica inutilizzata a mare. Una buona soluzione potrebbe consistere nella costruzione, lungo il bordo del mare, di un diaframma impermeabile del tipo di quello prima citato che, spinto fino ad incastrarsi nello strato impermeabile profondo, sarebbe atto ad isolare idraulicamente la vallata dal mare stesso e a realizzarvi un enorme bacino sotterraneo nel quale si raccoglierebbero tutte le acque di monte senza possibilità alcuna che abbiano a disperdersi in mare nel mentre sarebbe impedita la risalita del cuneo salino che le rende oggi inutilizzabili. Si tratta quindi di una ottima possibilità per rendere disponibili grandi masse d’acqua ad uso degli acquedotti.

Una fresa per lo scavo ed il rivestimento delle gallerie in roccia

Un secondo modo di realizzazione nel sottosuolo di imponenti volumi di invaso d’acqua potabile è l’utilizzazione di un’opera normalmente usata per altri scopi e specialmente per il transito dei mezzi di trasporto, e cioè una galleria scavata nella roccia e che si presta benissimo per raccogliere e conservare al fresco, al buio e al riparo dai raggi del sole ingenti quantità di acqua. Sussistono numerosi esempi di gallerie/serbatoio utilizzate da anni con risultati ottimi (vedi figure qui sotto ) e tra di questi anchehttp://www.altratecnica.it/un-maxi-serbatoio-per-l-acquedotto/roposta avanzata da chi scrive per la risoluzione dei problemi idropotabili dell’Isola d’Elba ed il cui progetto di massima è visibile in questo sito .

 

Esempi di serbatoio-galleria.: i serbatoi esistenti di Aby (Torino) e di Napoli .

I vantaggi offerti da opere di questo genere sono molteplici e consistono nella possibilità di drenare aree molto vaste grazie alla notevole estensione longitudinale della galleria che consente di raggiungere fonti molto distanziate e nel poter alimentare, in caso sia possibile costruirla ad una opportuna quota altimetrica, una gran parte del territorio direttamente a gravità. La caratteristica più saliente del serbatoio/galleria resta comunque il suo notevole volume utile che consente di conservare per i periodi di grande scarsità idrica generalmente dovuti alla siccità, le acque che precipitano abbondantemente durante le stagioni piovose e poter quindi far fronte ai fabbisogni che aumentano notevolmente in particolari occasioni come ad esempio per l’aumento della presenza turistica in coincidenza con le siccità estive. Vi si deve aggiungere che la moderna tecnica costruttiva consente di scavare in terreni di qualsiasi natura e di rivestire con materiali appropriati gallerie di grande sezione in maniera rapida, sicura ed economica. La tecnica consente anche l’ulteriore vantaggio di poter captare le eventuali falde che si incontrano nel tracciato della galleria come pure quella di escluderle e di lasciare inalterata l’idrologia del territorio attraversato nel caso che le condizioni locali lo impongano.

Una terza possibilità di stoccare nel sottosuolo grandi volumi d’acqua potabile è data dalla costruzione di condotte adduttrici di diametro notevolmente maggiore di quello strettamente necessario per il trasporto della massa liquida. In situazioni particolari di lunghe condotte di adduzione che collegano le fonti alla rete di distribuzione senza grandi dislivelli altimetrici del suolo è possibile raggiungere tale risultato trasformandole in grandi contenitori sub orizzontali che oltre ad invasare grandi volumi d’acqua consentono anche apprezzabili economie energetiche date dalle minori perdite di carico che le caratterizzano.

Profilo schematico di un serbatoio-adduttore della lunghezza di 20 Km ed un volume utile di 2.000.000 di mc

Un esempio di adduzione-serbatoio è visibile nel sito prima citato e riguarda un progetto non realizzato e relativo alla costruzione del serbatoio di accumulo per l’acquedotto della città di Venezia.

 

Planimetria di serbatotio-adduttore per Venezia

 

Sezione tipo del serbatoio adduttore per Venezia

Per concludere positivamente questa breve nota si riportano alcuni concetti generali del resto già espressi in altri articoli di questo sito. I problemi che presenta l’approvvigionamento idropotabile italiano sono tutti di grande entità e non possono certamente essere risolti se non con interventi anch’essi imponenti e molto impegnativi per i costi e per le modalità da adottare. Vi figurano il rifacimento delle reti acquedottistiche obsolete, la riorganizzazione generale del sistema di approvvigionamento con acquedotti di ampia estensione studiati in funzione degli impianti di telecontrollo e telecomando che prevedano, tra l’altro, una regolazione diffusa della pressione di esercizio, una rete di collegamento tra i vari acquedotti che consenta facili interscambi di portata ecc. ecc. Tra gli interventi consigliati un posto di primo piano va anche assegnato alla compensazione plurimensile delle portate da attuarsi con grandi e grandissimi serbatoi di accumulo. Vista l’impossibilità di costruire tali opere in superficie è necessario rivolgere l’attenzione al sottosuolo che presenta, in questo senso, favorevolissime occasioni. Nell’articolo se ne descrivono alcune veramente interessanti. E’ questo un argomento molto importante più volte trattato da chi scrive ma che è stato qui ripreso per ampliarlo con i riferimenti ai vari articoli specifici e soprattutto per corredarlo di una utilissima relazione redatta da autorevoli studiosi per documentare l’opportunità di trasferire nel sottosuolo strutture di vario genere e tra di queste senza dubbio anche i grandi serbatoi di accumulo d’acqua potabile che formano l’oggetto specifico della presente nota.

ACQUEDOTTI CON ELEVATE CAPACITA’ DI COMPENSAZIONE DELLE PORTATE E DI ACCUMULO ENERGETICO

 

Accumulo acqua ed energia

1) PREMESSA

Uno degli interventi basilari che in un futuro sempre più prossimo dovrà essere sistematicamente adottato per la risoluzione dei problemi legati all’approvvigionamento idropotabile, riguarda senza dubbio la costruzione di capaci serbatoi di accumulo atti ad effettuare la compensazione delle portate per periodi ben più lunghi di quelli giornalieri comunemente in atto. Si deve notare come, in una annata tipo, i periodi di consumo molto elevato sono statisticamente in numero limitato e quindi il modo più razionale per farvi fronte è proprio quello dell’accumulo delle eccedenze di portata operate nei giorni di basso consumo per renderle disponibili durante i successivi di grande richiesta e statisticamente di breve durata. Tale circostanza, se da un lato risolve un problema della massima importanza, dall’altro fa rilevare un grave difetto proprio dei sistemi acquedottistici e cioè un pieno uso delle strutture molto limitato nel tempo mentre per la stragrande maggioranza esse restano sottoutilizzate. Se poi si considerano le usuali modalità di progettazione degli acquedotti che impongono di dimensionarli in funzione del consumo massimo dell’ora di punta e per di più maggiorato, per ulteriore garanzia, di un buon 50% si arriva alla constatazione che i servizi idropotabili presentano di solito elevatissimi costi di costruzione ma una utilizzazione effettivamente molto scarsa che incide notevolmente nei costi di esercizio.
Lo scopo di questa nota è dimostrare come sia possibile costruire acquedotti che svolgono al meglio il loro compito 24 ore al giorno per 365 giorni all’anno, potendo disporre di due diversi regimi di esercizio: il primo che, impiegando interamente ed a soli fini acquedottistici tutte le risorse disponibili, fa fronte ai brevi periodi di consumo elevato, il secondo che le utilizza, durante tutto il tempo restante, in parte per alimentare l’utenza ed in parte per produrre energia elettrica. Se ne ricava un impiego costantemente razionale ed economicamente valido dei complessi e costosi impianti.

2) LA SOLUZIONE PROPOSTA

Fig. 1 = Schema idraulico

Il problema in argomento può essere ricondotto alla modalità di risoluzione dell’accumulo dell’energia eccedente il fabbisogno del momento allo scopo di poterla utilizzare nei successivi periodi di grande fabbisogno energetico. I dispositivi atti allo scopo e di cui è nota l’esistenza, sono costituiti soltanto dagli accumulatori elettrici che hanno però il grave difetto di una potenza molto limitata e dagli impianti idroelettrici reversibili basati su un doppio uso e cioè produrre energia elettrica di giorno e pompaggio d’acqua dal serbatoio inferiore a quello superiore sfruttando i cascami di energia elettrica durante la notte o durante i periodi di sovrabbondanza energetica. In questi ultimi tempi si sta pensando, con gli stessi scopi, all’impiego dell’idrogeno. Altre modalità in corso di sperimentazione concernono lo stoccaggio di di aria compressa a pressioni elevatissime ma trovano ostacolo nel riscaldamento che ne deriva e che provoca rilevanti dispersioni energetiche. Gli esempi sono comunque molto pochi e si può considerare ancora inesistente un valido metodo di accumulo energetico.
La soluzione che viene qui proposta è basata sull’impiego di un capace serbatoio idropneumatico atto allo stoccaggio di acqua in pressione durante i periodi in cui si rende disponibile energia elettrica a bassi costi.

Lo schema idrico del sistema, riportato nella fig. 1 allegata comprende:

– un serbatoio di accumulo di tipo tradizionale, avente una capacità pari almeno al 50% del consumo totale previsto per il giorno di massimo consumo, posto all’arrivo dell’adduzione e nel quale pescano tutte le pompe di sollevamento. Nulla vieta l’adozione di serbatoi di maggiore capacità con cui poter effettuare la compensazione multi giornaliera od addirittura multi settimanale ottenendo, sia ai fini acquedottistici e sia a quelli idroelettrici, risultati ancora più eclatanti di quelli di cui si parla in dettaglio nella presente nota e di cui si è fatto cenno nell’introduzione;

– l’impianto di pompaggio con immissione in rete per alimentarla in diretta tramite pompa a velocità variabile asservita alle pressioni anch’esse variabili che di ora in ora bisogna mantenere in rete;

– un secondo impianto di pompaggio per l’alimentazione del serbatoio idropneumatico tramite una serie di pompe a velocità fissa a funzionamento pulsante ma con diversificate pressioni di mandata, oppure tramite pompe a velocità variabile atte a coprire tutta la gamma di sollevamento di cui si discute;

– il collegamento diretto tra serbatoio tradizionale e serbatoio idropneumatico tramite condotta di collegamento munita di apparecchiatura di intercettazione servo comandata ;

– l’impianto per la produzione di energia elettrica tramite una serie di turbine alternatori (T) funzionanti a velocità e potenza variabili atte a sfruttare l’esistente carico idraulico tra i due serbatoi anch’esso variabile ;

un serbatoio idropneumatico di cubatura identica a quello tradizionale prima citato ed in grado di accogliere l’acqua con una pressione variabile in funzione del momento ma che può arrivare anche a 100 m ed oltre di colonna d’acqua.

Il concetto di base della soluzione proposta è dato dalla presenza dei due serbatoi funzionanti il primo alla pressione atmosferica ed il secondo a pressione maggiorata ad arte e quindi dalla possibilità che tutta l’acqua in arrivo durante la notte, ed in pratica per tutto il periodo in cui si può disporre di energia elettrica a basso costo, possa essere pompata nel serbatoio idropneumatico onde poterla sfruttare durante periodi successivi con il duplice scopo di alimentare l’utenza ed al tempo stesso di produrre energia elettrica preziosa che normalmente viene immessa nella rete Enel. Come detto anche l’acqua utilizzata per produrre energia elettrica viene restituita nel serbatoio tradizionale dove torna ad essere disponibile per l’alimentazione dell’utenza.

Sono previste due strutture innovative come il serbatoio idropneumatico e la turbina/alternatore funzionante a velocità variabile le cui caratteristiche principali possono essere riepilogate come segue.

1) Il serbatoio idropneumatico.
Si tratta di una struttura del tutto simile alle autoclavi normalmente utilizzate per aumentare la pressione di esercizio delle piccole reti acqedottistiche con la sola differenza delle dimensioni che, in questo caso, sono molto maggiori. In sostanza è un grande contenitore a tenuta ermetica che accumula acqua nella parte inferiore ed aria compressa superiormente. Ciò gli consente di svolgere le stesse funzioni di un serbatoio sopraelevato ma con il vantaggio di poter variare a piacere la pressione di uscita dell’acqua. Nel caso specifico è in grado di contenere grandi volumi d’acqua ad una pressione tanto maggiore quanto più alta è la potenza disponibile per il pompaggio di immissione. È munito di compressore per realizzare una volta tanto il cuscinetto d’aria e le valvole di scarico dell’aria stessa. Maggiori delucidazione del serbatoio idropneumatico possono leggersi nell’omonimo articolo presente nel sito e direttamente cliccando qui

2) La turbina-alternatore.
Si tratta di una serie di macchine in grado di funzionare a portata e pressione diversificate producendo energia elettrica in quantità variabile in funzione dei volumi e delle pressioni che si rendono via via disponibili ma avente tutte le caratteristiche per poter essere accolta dalla rete Enel. Gli alternatori dovranno quindi possedere organi di regolazione dell’eccitazione o qualche altra modalità di modulazione di funzione  che gli consentano di funzionare a velocità diversificate in funzione dei salti utili disponibili ma con buoni rendimenti ed inoltre possedere un sistema di inverter atti a stabilizzare la frequenza della corrente prodotta.
Il funzionamento normale sarà il seguente.
Nei periodi di grandi consumi tutti gli impianti devono essere adibiti alla funzione specifica dell’acquedotto e cioè all’alimentazione idropotabile dell’utenza. A tale scopo i due serbatoi funzioneranno in parallelo ed ambedue a pressione atmosferica essendo aperte le condotte di collegamento e le valvole dell’aria. Essi contribuiranno pertanto con il loro intero volume di invaso alla compensazione delle portate consentendo di far fronte ai picchi di richiesta dell’utenza grazie alla loro notevole capacità. Nel caso si sia scelta la soluzione di grande capacità si potrà dar luogo alla compensaziine settimanale o addirittura a quella quindicinale con tutti i vantaggi che ne derivano.
Terminato il periodo critico il serbatoio idropneumatico inizierà a svolgere la sua azione e saranno pertanto chiuse le valvole di collegamento con l’altro serbatoio e le valvole di scarico dell’aria mentre sarà ripristinato, con i compressori, il cuscinetto d’aria compressa e si darà inizio all’accumulo dell’acqua in arrivo in due diversi modi e cioè nel serbatoio idropneumatico ogni qualvolta si rende disponibile energia elettrica a basso costo come ad esempio durante la notte, oppure nell’altro serbatoio di tipo tradizionale negli altri casi.
La rete acquedottistica viene alimentata da una pompa a velocità variabile che pesca dal serbatoio tradizionale ed immette l’acqua direttamente in rete a pressione variabile in funzione delle richieste dell’utenza e quindi elevata di giorno quando esse sono massime e bassa di notte e nei periodi di basso consumo. Durante il giorno ed in genere quando la corrente elettrica è a costo maggiorato, entrano in funzione le turbine che producono corrente elettrica preziosa sfruttando l’acqua in pressione del serbatoio idropneumatico e che viene scaricata nel serbatoio tradizionale onde renderla disponibile per l’utenza.
A sua volta quest’ultimo serbatoio svolge un duplice ruolo potendo sia rifornire la rete seguendone a puntino le richieste oppure rifornire il serbatoio idropneumatico.
Interessante far notare la grande capacità di accumulo totale d’acqua dato dalla presenza dei due serbatoi ambedue in grado, tutte le volte che si presenta la necessità, di far pervenire in rete tutto il volume invasato in precedenza.

Ed ecco la descrizione di una normale giornata di funzionamento rappresentata nel grafico della fig. 2 e nella tabella allegati.

Fig. 2 = Grafico di funzionamento della giornata tipo

Durante la precedente notte tutta l’acqua in arrivo nel serbatoio tradizionale e quella accumulata in precedenza sono state pompate a pressione elevata nel serbatoio idropneumatico fatta eccezione per la piccola parte che è servita per alimentare in diretta l’utenza. Il sollevamento ha avuto luogo tramite la serie di pompe a giri fissi con funzionamento pulsante oppure, a seconda dell’installazione fatta, da pompe a velocità variabile, onde adeguare portata sollevata e la pressione alle condizioni del momento.

Al mattino (ore 5 nell’esempio) il serbatoio tradizionale è quasi vuoto mentre l’altro è al massimo invaso. Quando iniziano ad aumentare i consumi dell’utenza (ore 7) il serbatoio idropnematico comincia a svuotarsi per alimentare le turbine che producono corrente elettrica. Nel serbatoio tradizionale entra sia l’acqua dell’adduzione e sia quella scaricata dalle turbine e quindi c’è la disponibilità massima per l’ alimentazione dell’utenza nel mentre l’acqua in esubero rispetto ai consumi è immagazzinata nel serbatoio tradizionale stesso. Alle ore 17 il serbatoio idropneumatico è vuoto ed ha termine la produzione di energia elettrica. La notte successiva il ciclo si ripete con riempimento del serbatoio idropneumatico ed alimentazione in diretta della rete a bassa pressione.

Da notare come la notevole capacità di invaso dei due serbatoi consenta di utilizzare al meglio gli impianti di produzione idroelettrica potendo nelle ore notturne immettere nel serbatoio idropneumatico non solo la portata in arrivo dall’adduzione ma anche quella accumulata in precedenza nel serbatoio tradizionale. Ciò sarà meglio comprensibile esaminando il grafico ed i dati dell’esempio di una giornata tipo.

Resta da definire la pressione di funzionamento del serbatoio idropneumatico per la quale sussiste un buon grado di libertà per cui si può impostare il regime che meglio si adatta alle condizioni del momento. Infatti il funzionamento di tale struttura segue la regola di “Mariotte” raffigurata  nel grafico a lato dove sono visibili  le variazioni delle percentuali di riempimento in funzione della pressione. Sono tracciate in linea continua 6 diverse curve di esercizio che sono funzione dalla pressione iniziale dell’aria compressa immessa dai compressori. Ad esempio se si adotta la curva n. 2 è necessario all’inizio (ed una volta soltanto) immettere aria compressa a due bar il che significa appunto una pressione di due bar a serbatoio vuoto. Tramite pompaggio si otterrà un riempimento del 20% del volume totale del serbatoio con una pressione di 2.5 bar, del 50% con 4. Il limite massimo corrisponde ad un 80% di riempimento del serbatoio con 10 bar di pressione. La stessa pressione descritta si rende poi disponibile per il funzionamento delle turbine, ovviamente fatte salve le perdite di rendimento dell’insieme. Qualora si volesse operare a maggior pressione occorre scegliere una curva di valore più elevato come ad esempio la curva n.3. Si ritiene però consigliabile di contenere la pressione massima al valore di 10 bar per facilitare la regolazione delle turbine ed inoltre per contenere il riscaldamento-raffreddamento del cuscino d’aria durante le fasi di compressione-decompresione.

Nell’applicazione descritta si verificano variazioni di temperatura del cuscino d’aria temperatura che tende ad aumentare durante la compressione ed a diminuire in caso contrario. Si tratta degli stessi problemi che si sono incontrati nella ricerca di realizzare una modalità di accumulo di energia del tutto simile a quella qui presentata con la sostanziale differenza dell’impiego di aria compressa immagazzinata a pressioni elevatissime (fino a 500 bar), problemi che, in quegli esperimenti, si è tentato di superare immagazzinando il calore prodotto in speciali piastre metalliche ad alto assorbimento calorico ma che alla fine hanno decretato il fallimento di tale tecnica di accumulo energetico . Si ritiene che il problema non sussista nella soluzione quì proposta perché in questo caso il calore prodotto è modesto sia perché la variazioni di pressione in serbatoio è molto lenta sia perché è di valore molto piccolo. Nell’esempio riportato si passa da 2 a 10 bar in cinque ore durante le quali tutto il maggior calore dell’aria viene assorbito dal grande volume d’acqua che vi si trova a contatto e che pertanto aumenterà leggermente di temperatura. Il fenomeno contrario avrà luogo durante la successiva fase attiva di produzione energetica con decompressione dell’aria che avrà ben 10 ore a disposizione. Il cuscinetto d’aria, grazie al passaggio da 10 a 2 bar, si raffredderà facendo ritornare fresca anche l’acqua con cui è a contatto e che riprenderà la temperatura originale, fatte salve piccole perdite energetiche di valore del tutto trascurabile.

3) CONCLUSIONI

Si è descritto un sistema idrico atto a realizzare in primo luogo una notevole compensazione delle portate degli acquedotti e cioè di immagazzinare il surplus di portata caratteristica peculiare di certi periodi per restituirlo successivamente al verificarsi di richieste eccezionalmente elevate. Trova così compimento una operazione che, potendo riguardare perfino la compensazione quindicinale o addirittura mensile delle portate, rappresenta un risultato importantissimo nella gestione dei moderni acquedotti assillati da una carenza delle fonti sempre più sentita e difficile da colmare.
Il secondo scopo che si raggiunge è la piena utilizzazione di opere come quelle necessarie per l’accumulo di ingenti volumi idrici le quali in un regime acquedottistico normale rimarrebbero sottoutilizzate per lunghi periodi. Con le opere proposte si approfitta della notevole disponibilità di invaso per lunghi periodi per produrre energia elettrica preziosa in quanto prodotta nelle ore diurne di maggior pregio.
Vai all’indice

INDIETRO

AVANTI

LA RISOLUZIONE DELLE EMERGENZE IDROPOTABILI MEDIANTE SERBATOI SOTTERRANEI DI INTEGRAZIONE DEI BACINI ARTIFICIALI

serbatoi integrativi

 

1. PREMESSA

Nelle regioni, soprattutto del meridione d’Italia, afflitte da sistematiche crisi nel rifornimento idrico, si usa ricorrere all’utilizzazione dell’acqua accumulata, durante antecedenti periodi di intensa piovosità, in bacini artificiali creati mediante dighe di ritenuta. Sono ben noti gli inconvenienti che tali opere presentano per quanto riguarda l’impatto ambientale e per il pericolo di franamento delle sponde dei laghi. Se si aggiungono il problema delle rilevanti perdite d’acqua dagli invasi per l’evaporazione causata da irraggiamento solare e quello dell’interramento cui gli stessi sono inevitabilmente soggetti e che finirà per comprometterne in futuro la funzionalità, si ottiene un quadro niente affatto incoraggiante della situazione. In realtà regioni come la Sicilia o la Sardegna dove ingenti sono stati i capitali profusi per la costruzione di opere come quelle indicate, il problema del rifornimento idropotabile della popolazione è lungi dall’essere risolto né si può prevedere lo sia in un futuro più o meno lontano quando l’aumento dei consumi specifici richiederà volumi d’acqua ancora maggiori. Viste le premesse non si ritiene logico continuare nell’azione intrapresa e cioè riempire il territorio di dighe e laghi artificiali come quelli descritti. Occorre invece ricercare soluzioni diverse, che si integrino perfettamente con quelle citate aumentando la disponibilità d’acqua senza provocare danni all’ambiente. Saranno gli studi in corso per la ricarica artificiale di falda, quelli per la creazione, mediante diaframmi di impermeabilizzazione, di capaci bacini sotterranei ed altre ricerche del genere, tutte tese a trasferire nel sottosuolo gran parte dei servizi dannosi in superficie, che produrranno in futuro risultati molto interessanti. Nel frattempo una delle soluzioni dalla quale si possono ottenere immediati grandi benefici si ritiene possa essere la costruzione di grandi serbatoi costituiti da gallerie in roccia secondo le indicazioni sommariamente riportate nel presente lavoro.

2. CARATTERISTICHE GENERALI DELLE OPERE PROPOSTE

Un serbatoio galleria costruito mezzo secolo fa e perfettamente funzionante

Lo scopo da raggiungere con le opere in progetto consiste soprattutto nella raccolta, nel territorio interessato, del maggior quantitativo d’acqua possibile ed inoltre nel garantirne la conservazione per un lungo periodo senza che le sue caratteristiche chimico-fisiche ed organolettiche abbiano a subire alterazioni di rilievo. Il manufatto che meglio vi si presta è senza dubbio il serbatoio galleria scavato nella roccia e rivestito internamente in calcestruzzo che si vuole qui esaminare in dettaglio. Si tratta in pratica a di adibire un’opera come il tunnel, che normalmente è usato per scopi completamente diversi come sono ad esempio quelli legati alla viabilità oppure all’adduzione dell’acqua degli impianti idroelettrici, ad un uso insolito come è quello di fungere da grande contenitore d’acqua potabile. Il serbatoio che così si ricava, avendo una modesta sezione trasversale ma un notevolissimo sviluppo longitudinale, ha la caratteristica saliente di poter percorrere, grazie appunto alla sua notevolissima lunghezza, ampi territori e quindi di andare, previo un attento studio del suo tracciato, a raccogliere l’acqua lì dove essa è reperibile. La galleria ha infatti un solo vincolo dato dalla necessità di mantenere per tutto il suo sviluppo una quota costante nel mentre il suo tracciato è completamente libero di svolgersi in una direzione qualsiasi e quindi può essere rettilineo, curvo, a maglia chiusa od aperta, a percorso singolo o ramificato: in altri termini può svolgersi ovunque le particolari condizioni progettuali lo richiedano. E’ da notare come nessuno dei manufatti che si utilizzano normalmente per invasare grandi volumi d’acqua possiede caratteristiche simili. Non le possiedono ad esempio i serbatoi costituiti da grandi vasche in cemento armato la cui capacita di invaso è concentrata in spazi più ristretti possibile, non i laghi artificiali il cui bacino imbrifero sotteso comprende una sola valle o, al massimo qualche altra situata nelle vicinanze quando è possibile collegarla ad esso tramite gallerie o canali di gronda. Quello citato è uno dei vantaggi che presenta la galleria/serbatoio che preme far rilevare fin da queste prime righe. Si vedrà nel prosieguo come ci siano altre condizioni per rendere l’opera assolutamente consigliabile nonostante il suo elevato costo di costruzione.

Il serbatoio-galleria di Napoli

Immaginiamo ora di operare in un territorio densamente popolato la cui alimentazione idrica sia, ad esempio. affidata a due bacini artificiali costruiti nell’entroterra montagnoso e posti ad una distanza di circa 25 Km l’uno dall’altro. Ognuno dei due bacini raccoglie le acque della rispettiva vallata che, durante periodi di grande siccità, non è però sufficiente per soddisfare il fabbisogno anche a causa della notevole dispersione d’acqua per evaporazione a seguito dell’irraggiamento solare. Nel territorio interposto tra i due invasi esistono alcuni compluvi nei quali, durante i periodi piovosi, si scaricano a valle, inutilizzati, notevoli volumi d’acqua che, se fossero invece raccolti ed accumulati, apporterebbero un notevole contributo alla risoluzione del problema. E’ questo l’ambiente ideale per adottare la soluzione tecnica prima descritta e cioè la costruzione di una grande galleria/serbatoio che collega tra di loro i due invasi pur essendo ubicata più a valle e a notevole profondità sotto il suolo. Il suo andamento è all’incirca parallelo alle curve di livello del terreno e quindi interseca o meglio sottopassa tutte le vallette ed i compluvi, nessuno escluso, che si trovano nel territorio, rendendo possibile la raccolta delle acque che le percorrono, nonché il suo accumulo all’interno della galleria medesima dove, al fresco ed al buio, tali acque possono conservarsi inalterate fino al momento del consumo. Il diametro della galleria, da decidersi in funzione delle necessità locali ma comunque non inferiore a 6 metri, consente di realizzare grandissimi volumi di invaso. Ad esempio scegliendo un diametro di 10 m. totalmente compatibile con le moderne tecnologie di scavo, si ottiene un volume utile di serbatoio pari a 75000 mc al chilometro quindi per l’intero percorso in argomento si ha un invaso totale di ben due milioni di mc.circa.
La presa delle acque ha luogo mediante altrettante briglie costruite attraverso il fosso o la valletta intersecata dalla galleria nel mentre capaci vasche di decantazione, filtrazione e disinfezione da costruirsi anch’esse nel sottosuolo con le modalità che saranno più avanti indicate, consentono di effettuare il trattamento necessario per immagazzinare nella galleria acqua potabile cioè pronta ad essere consegnata all’utenza. Da rilevare come lo scavo delle gallerie in roccia ha la caratteristica di richiamare all’interno le acque delle falde che si trovano nel soprastante terreno soprattutto quando, come succede frequentemente, sono presenti fessurazioni o faglie nell’ammasso roccioso atrraversato dalle opere. Questo fatto, che normalmente costituisce un notevole impedimento per il prosieguo dei lavori di scavo, nel nostro caso rappresenta un grande vantaggio in quanto consente la raccolta di preziosa acqua naturalmente potabile e che va ad aggiungersi a quella raccolta in superficie. A titolo di esempio valga il caso delle gallerie autostradali sotto il Gran Sasso dove è stata captata una portata d’acqua potabile di oltre 1.5 mc al secondo, non prevista in origine ed attualmente utilizzata per alimentare importanti acquedotti del teramano e dell’aquilano.
In definitiva l’opera che si propone di eseguire, per integrare la potenzialità dei due invasi artificiali presi ad esempio, è un serpentone sotterraneo dell’estesa di circa 25 Km avente un diametro di circa 10 m, internamente rivestito in calcestruzzo.e quindi con un volume utile totale di circa due milioni di metricubi . In corrispondenza di ognuna delle vallette sottopassate dalla galleria si costruisce una griglia di presa e, nella finestra di accesso alla galleria principale oppure in apposito manufatto sotterraneo anch’esso scavato in roccia, una capace vasca di decantazione, filtrazione e disinfezione delle acque.
Il grande serbatoio così realizzato costituisce una enorme capacità in grado di effettuare la compensazione trimestrale di tutte le portate d’acqua disponibili e quindi non solo di quelle raccolte come indicato ma anche di quelle prodotte dai due invasi preesistenti che, dopo depurazione, vi possono essere immesse per essere conservate anch’esse al buio e al fresco. I laghi artificiali, così svuotati, restano pronti a raccogliere le acque delle successive piogge.
In definitiva questi sono i vantaggi della galleria/serbatoio:
– nessun danno all’ambiente essendo le opere per la quasi totalità sotterranee;
– nessuna perdita d’acqua per evaporazione, sfioro dei serbatoi o perdita di altro genere;
– possibilità di conservare a lungo l’acqua senza che abbia a subire alterazioni di sorta.
– viene immagazzinata acqua potabile cioè pronta per essere consegnata all’utenza senza alcun ulteriore trattamento;
– costruendo il serbatoio/galleria ad una quota opportuna è possibile recapitare l’acqua a gravità fino al domicilio dell’utenza senza bisogno di pompe;
– vengono intercettate tutte le vallette esistenti nel territorio e quindi sfruttata tutta l’acqua di pioggia che vi precipita nei periodi piovosi;
– viene raccolta l’acqua delle falde sotterranee presenti nel territorio sopra la galleria;
– costruendo delle vasche di decantazione di grande capacità è possibile ottenere la laminazione delle portate di piena evitando danni provocati, durante le piogge eccezionali, da alluvioni o esondazioni dei rii.

Da segnalare come, nel caso non si volesse turbare la falda soprastante i lavori, la moderna tecnica di scavo e costruzione del rivestimento della galleria consente di mantenere nel fronte di lavoro e all’esterno una pressione artificiale atta ad operare senza influire minimamente nell’ambiente esterno

3. CONCLUSIONI

Messo in evidenza che la risoluzione del problema idrico dei territori nei quali scarseggia la disponibilità di fonti perenni non può essere affidato esclusivamente ai laghi artificiali ma che occorre sfruttare il sottosuolo per ricavarvi servizi come quelli idrici che in superficie occupano enormi spazi e provocano danni all’ambiente, si è proposta la realizzazione grandi serbatoi tramite gallerie circolari scavate in roccia. Al vantaggio principale di un’opera del genere che è quello di potere, grazie alla sua notevole estesa longitudinale, percorrere ampi territori e quindi raccogliere le acque piovane di bacini imbriferi molto ampi, se ne aggiungono molti altri puntualmente elencati nella nota. Un esempio completo di serbatoio galleria è in dettaglio descritto nella nota “L’approvvigionamento idrico dell’Isola d’Elba” visibile in questo stesso sito.

Vai all’indice

INDIETRO AVANTI

DEL PROBLEMA IDRICO DELL’ISOLA D’ELBA HANNO SCRITTO

Copertina della rivista nella quale è stato pubblicato l’articolo su maxi serbatoio-galleria dell’Isola d’Elba

i media e l’acqua potabile dell’Isola dì’Elba

 

GALLERIE E GRANDI OPERE SOTTERRANEE – Periodico trimestrale riconosciuto dal C.N.R. della Società Italiana Gallerie – Patron Editore

Nel n. 75 dell’aprile 2005 è riportato in lingua italiana ed inglese un riassunto del progetto di massima con figure allegate

 

IL TIRRENO
QUOTIDIANO DEL GRUPPO L’ESPRESSO
EDIZIONE PIOMBINO-ELBA

Sabato 15 giugno 2002

Pioggia nel serbatoio
Al meeting della Faita presentato il piano
per l’autosufficienza idrica dell’isola

Veduta prospettica del serbatoio-galleria nella soluzione futuro con percorso totale

Sotto questo titolo il cronista C.R. descrive il convegno organizzato il 13.06.2002 a Portoferraio riassumendo, come segue, le caratteristiche principali del maxiserbatoio da ricavare nel sottosuolo elbano attorno al M. Capanne:

Lo spunto per “ragionare fuori dall’improvvisazione”, come ha detto il presidente della Faita, Alberto Sparnocchia, è stato offerto dalla presentazione di un’ idea-progetto del tecnico acquedottista Marcello Meneghin.
L’idea è quella di creare attorno al monte Capanne un serbatoio sotterraneo ad anello capace di raccogliere e conservare le precipitazioni invernali. Si calcola che piovano sull’Elba 200 milioni di metri cubi l’anno di acqua buona, a fronte di un fabbisogno di 15, massimo 20 milioni di metri cubi.
Il problema è che il picco delle precipitazioni coincide con le minime esigenze, e non vi è modo, ora, di conservare il prezioso liquido. Per un primo stralcio funzionale di circa un chilometro, capace di centomila metri cubi, si spenderebbe quanto il costo annuo di per rifornirsi con le bettoline: 7 miliardi di vecchie lire.

Per quanto concerne l’interessante intervento del geologo Luciano Campitelli l’articolo così prosegue:

Il progetto non è neppure nuovo: il geologo Luciano Campitelli ha ricordato come dal 1982 giaccia negli uffici della Comunità Montana un suo studio sulle risorse idriche, che indicava un’analoga via per l’autonomia idrica dell’isola. Il professionista ha poi ricordato come con l’ attuale rifornimento via condotta sottomarina l’Elba sia sottoposta a un triplice rischio: di salute innanzitutto, poiché le falde del Salcio dalle quale si preleva l’acqua per la Val di Cornia (e l’Elba) sono (per la vicinanza con Lardarello) inquinate dal boro. E che ciò non sia un gratuito allarmismo lo dimostrano le notizie per le quali, fermi restando a livello europeo gli attuali limiti dell’inquinante, le falde che dissetano la Val di Cornia andranno chiuse al 31 dicembre 2002. In modo molto italiano si sta sperando che tali limiti di legge vengano innalzati, per non trovarsi in brache di tela. E questo è il secondo rischio. L’ultimo riguarda la non remota possibilità di cedimento della condotta sottomarina: i primi 9 chilometri – è stato detto – sono sottoposti da tempo ad un eccessivo stress meccanico.

L’articolo termina riportando in sunto gli interventi del consigliere regionale Leopoldo Provenzali (Fi), dell’assessore alle Risorse idriche della Comunità Montana, Pietro Galletti, di rappresentanti elbani dei Verdi, Rifondazione e Social Forum sempre in tema di rifornimento idrico dell’Isola d’Elba.

 

IL TIRRENO
QUOTIDIANO DEL GRUPPO L’ESPRESSO
EDIZIONE PIOMBINO-ELBA

Martedì 25 giugno 2002

Acqua, al convegno gli esperti hanno bocciato i dissalatori

Il Tirreno torna a parlare del problema idropotabile dell’Isola d’Elba riportando alcune delle affermazioni del sottoscritto. Quella riguardante l’intervento del geologo Luciano Campitelli così recita testualmente:

Dell’intervento del geologo elbano Luciano Campitelli, Meneghin afferma che “ha fornito le prove per le quali l’Elba potrebbe, tramite utilizzazione razionale delle proprie risorse, diventare autonoma e autosufficiente nell’alimentazione idropotabile, e, affermazione altrettanto importante, che non sussistono, dal punto di vista geologico ed ingegneristico, ostacoli di sorta alla costruzione della galleria/serbatoio”. Campitelli, inoltre, ha messo in allerta gli amministratori sui “pericoli veramente gravi che sta correndo l’isola per la elevata probabilità che la Val di Cornia debba improvvisamente sospendere del tutto le sue forniture, vuoi per la presenza del boro, che renderebbe inutilizzabile l’acqua, vuoi per le precarie condizioni della condotta sottomarina.

Spiegato l’intervento del tecnico Carlo Mauri, che da specialista in impianti di trattamento acque qual è dichiara che:

dall’installazione di impianti di desalinizzazione dell’acqua marina o di quella salmastra non possano derivare, per l’Elba, grandi risultati.

L’articolo prosegue riportando le seguenti precisazioni del sottoscritto:

Tra gli argomenti da ribadire – prosegue Meneghin – figurano alcune caratteristiche del serbatoio-galleria, come quella di contenere non acqua grezza da sottoporre a trattamento, bensì acqua pronta per essere consegnata all’utenza senza alcun intervento. La stessa può infatti arrivare nella maggior parte delle case elbane direttamente per caduta grazie alla sua quota altimetrica pari a 150 metri sul mare. È evidente – aggiunge – l’alto grado di sicurezza di un servizio di questo genere in quanto non soggetto né alle bizze dell’energia elettrica, né alla precarietà degli impianti di trattamento o di sollevamento. Ben diverso il caso degli attuali acquedotti la cui funzionalità è condizionata da fattori determinanti: la Val di Cornia che, come detto dal dottor Campitelli, può entrare in crisi senza preavviso; i pozzi che possono quanto prima essere interessati da infiltrazione di acqua marina che ne comprometterebbe totalmente l’utilizzazione; le bettoline che richiedono una spesa annua di ben 7 miliardi di vecchie lire che possono anche mancare. Nulla di tutto questo nel caso del serbatoio-galleria che, una volta riempito durante l’inverno-primavera, è in grado di mettere a disposizione ben 2 milioni di mc d’acqua fresca e sicuramente potabile. Altro aspetto è quello dei serbatoi: “All’Elba – dice Meneghin -, quando si parla di tali strutture si è soliti riferirsi a capacità utili di qualche centinaio di mc, in qualche caso, ritenuto eclatante, di due, tremila mc. L’invaso del serbatoio galleria in progetto è previsto in circa 2 milioni di mc. La differenza, notevolissima, può dare una chiara idea dei risultati ottenibili”. Altra sottolineatura, Meneghin la riserva al tema della la sicurezza igienica, che un servizio come quello idrico deve tassativamente presentare: “In tal senso – sostiene – una delle caratteristiche fondamentali di un acquedotto è quella di mantenere le condotte sempre in pressione, senza alcuna deroga. È infatti questa la sola condizione perché gli insetti, le radici, le sostanze inquinanti sempre presenti nel terreno attraversato dalle tubazioni, non possano penetrare nei tubi essendone impedite dalla fuoriuscita d’acqua a forte velocità che si verifica in corrispondenza delle fessure o delle piccole rotture”.

 

IL TIRRENO
QUOTIDIANO DEL GRUPPO L’ESPRESSO
EDIZIONE PIOMBINO-ELBA

Domenica 30 giugno 2002

PROGETTO FAITA
Nasce un comitato a sostegno
del deposito sul Capanne

Il Tirreno in questo numero, torna a parlare, per la terza volta in pochi giorni, del progetto del maxiserbatoio sotterraneo atto a risolvere la crisi idrica elbana.

 

JOINELBA

 

N. 643 – Venerdi 14 Giugno 2002

Emergenza idrica infinitaChe cosa è emerso dalla “riflessione in pubblico” della Faita

E’ possibile leggere in questo numero del giornale, l’articolo di Carlo Rizzoli relativo al convegno tenuto all’Hoter Airone di Portoferraio sul problema idrico Elbano e sulla sua risoluzione a mezzo di un maxiserbatoio da ricavare nel sottosuolo roccioso che circonda il M. Capanne.

 

JOINELBA

N. 648 – Lunedì 1 Luglio 2002

Un comitato a sostegno della proposta Meneghin
La Faita ed Elba2000 rilanciano l’idea dell’Invaso-Galleria del Capanne per placare la sete elbana
Viene dato notizia della riunione effettuata il 26 giugno, presso la Comunità Montana dell’Elba e Capraia, alla presenza dell’Assessore alle Risorse idriche Pietro Galletti, di alcuni tecnici e di un rappresentante del Movimento Elba 2000 allo scopo di costituire un comitato a sostegno del progetto Meneghin.
L’articolo così prosegue:

Il progetto Meneghin, com’è ormai noto, prevede la costruzione di una galleria-serbatoio, ai piedi del Monte Capanne e ad un’altezza di circa 150 mt, in cui far confluire tutte le acque piovane della zona. Esse, al momento, finiscono in gran parte in mare e, in base ai dati pluviometrici, sarebbero largamente sufficienti a soddisfare il fabbisogno elbano.

L’acqua verrebbe distribuita per caduta, e quindi con un considerevole risparmio energetico, alla stragrande maggioranza della popolazione elbana, essendo limitata la percentuale di coloro che vivono in nuclei situati ad una altezza superiore ai 150 mt.

Questo progetto non comporta problemi di impatto ambientale e potrebbe risolvere in modo definitivo la questione dell’approvvigionamento idrico all’isola d’Elba.

Al termine della riunione, è stato deciso di costituire un comitato, del quale faranno parte, oltre a Marcello Meneghin e all’Assessore Galletti, l’Associazione Albergatori, la scrivente associazione, la Confcommercio, la Confesercenti, la Coldiretti, un rappresentante del Movimento Elba 2000 (che insieme alla Faita ha preparato il convegno, all’hotel Airone, per la presentazione del progetto) e il dr. Luciano Campitelli, geologo, che ha una vasta conoscenza del territorio elbano e delle relative risorse idriche e dovrà supportare il lavoro dei tecnici che verranno dal continente.
Lo scopo del comitato è di approntare un progetto di massima, da sottoporre poi all’esame dei rappresentanti delle forze politiche locali affinché lo facciano proprio e lo sostengano: è evidente, infatti, che senza il loro appoggio sarebbe difficile realizzarlo.

 

ELBAOGGI

N. 58 – Giovedì 13 giugno 2002

Crisi idrica: ancora sull’invaso sotterraneo

Fatta la seguente premessa:

Marcello Meneghin, il geometra, esperto di acquedotti, che da tempo propone di combattere la ‘sete estiva’ dell’Elba attraverso la costruzione di un grande invaso sotterraneo in cui raccogliere l’acqua piovana, ci scrive rispondendo ad alcuni dubbi che avevamo espresso a proposito del suo progetto

L’articolista riporta la seguente mia lettera di risposta alle critiche mosse al progetto/idea di grande serbatoio sotterraneo:

 

Veduta prospettica del primo lotto dei serbatoio-galleria che, con un volume di invaso pari a 100000 mc sarebbe in grado di fronteggiare le crisi estive
 Spett.le Elba oggi
Nel numero 59 del 20 giugno 2002 del Vs settimanale sono riportate alcune critiche al mio progetto di sistemazione definitiva del servizio idrico dell’Elba da attuarsi tramite un grande serbatoio sotterraneo.
Dico subito che mi fa piacere leggere commenti, anche se negativi. Quello che dispiace è il constatare come, nonostante la gravità del problema e fatte salve alcune encomiabili eccezioni, iniziative come la mia, rimangano nell’indifferenza generale.
Devo anche far presente che l’aver pensato ad una soluzione particolare per l’Elba non è un’idea stramba che è frullata nel cervello del sottoscritto, semplicemente fa parte delle cose che vado facendo da almeno 40 anni: prima le facevo per lavoro ora lo faccio per passione.
Altra cosa importante: quello da me redatto è soltanto un progetto-idea di massima che è tutto da verificare sia sotto gli aspetti idrogeologici, sia da quelli acquedottistici veri e propri. Ed è questa la richiesta avanzata dalla Faita nel convegno del 13 giugno 2002: esaminare a fondo il progetto e farlo verificare da esperti. Passo a commentare una per una le vostre considerazioni.
A) – Opere forse dannose per l’ambiente Ho buoni motivi per ritenere che le opere che danneggiano meno la bellissima isola siano quello sotterranee come quella da mè proposta
B ) – Opere forse non eseguibili e rischi di natura geologica.  Fatti salvi i doverosi accertamenti cui accennavo, la parte occidentale dell’Elba, come confermato nella numerosa letteratura tecnica esistente e nella relazione che il dott. Campitelli, geologo elbano, ha fatto nel convegno dell’Airone, è costituita da granito di ottima qualità nel quale è sicuramente possibile scavare una galleria da 10 m, di diametro senza creare inconvenienti di sorta. Lavori del genere si sono eseguiti per la viabilità in molte parti d’Italia anche in presenza di rocce molto meno consistenti (in tal caso si registra soltanto un aumento dei costi). Da tener presente che il serbatoio/galleria in argomento presenta solo il vincolo altimetrico di dover essere posto a quota 150 m sul mare mentre per quanto riguarda il suo andamento planimetrico non sussiste alcun obbligo. Durante lo scavo il tracciato potrà quindi esser spostato verso destra o sinistra in modo da incontrare sempre rocce che presentino le migliori caratteristiche, cercando naturalmente di evitare eventuali zone di dubbia consistenza o qualità.
C ) – Impatto ambientale.  Gli inconvenienti principali che di solito si riscontrano nella esecuzione di opere come quelle in oggetto, figurano in primo luogo le turbative del sistema idrico sotterraneo. Ad esempio nel caso delle gallerie stradali fatte sotto il Gran Sasso, si sono provocati gravi danni alla soprastante falda acquifera che, attratta all’interno delle gallerie, ha subito un vero e proprio sconvolgimento. Bisogna però rilevare che nel nostro caso questo fatto anziché essere un difetto grave rappresenta un grosso vantaggio perché è proprio grazie a questo fenomeno che si spera di raccogliere all’interno della galleria/serbatoio grandi portate della preziosa acqua potabile, nel mentre quello che succede alla soprastante falda passa in secondo ordine.
Il secondo inconveniente che presenta in genere lo scavo delle gallerie è dato dalla la necessità di smaltire grandi quantitativi di materiale di risulta. Nel nostro caso io ritengo che anche questo non sia un problema ma che, al contrario, il poter disporre di grandi quantitativi di ottimo materiale lapideo, ed in particolare di granito, in un’isola, sia solo un vantaggio. Potranno con la sabbia ricavata, essere ripristinate spiagge erose dalle mareggiate, con le ghiaie costruire rilevati stradali, ripristinare le cave di S. Pietro secondo il loro profilo originale, si potrà infine disporre di ottimi inerti da calcestruzzi a buon prezzo.
Nessun altro inconveniente dovrebbe essere arrecato all’ambiente essendo tutte le opere sotterranee.
D ) – Stato precario delle reti acquedottistiche esistenti. Nella vostra nota viene detto che le fatiscenti reti acquedottistiche oggi presenti all’Elba non consentiranno l’utilizzazione razionale del grande serbatoio. Occorre però dire che se le reti s
Locandina del Convegno sull’approvvigionamento idrico dell’Elba tenuto nel giugno 2013

ono fatiscenti bisognerà in ogni caso provvedere al loro ripristino con il ché il problema è risolto.
E ) – Costo elevato dei lavori di costruzione del serbatoio/galleria Nella valutazione dei costi di costruzione del serbatoio/galleria bisogna tener presente l’utile derivante dalla vendita del materiale di risulta dello scavo.
In secondo luogo bisogna considerare che il serbatoio va in ogni caso costruito per stralci da subito funzionali e quindi la spesa va diluita nel tempo. Ben diverso sarebbe il caso delle altre opere come ad esempio i bacini di Pomonte e Patresi che non possono essere utilizzati se non a opere completate. E’ inoltre da tener presente che, come già ripetuto, se l’importo di 7.000.000.000 di vecchie lire che ogni anno viene spesa per il trasporto di 50.000 mc d’acqua con bettoline venisse impiegata una volta soltanto per costruire il primo Km di galleria si potrebbe disporre di ben 100.000 mc di acqua (cioè del doppio) ma non per un solo anno bensì per tutti gli anni a venire.
La costruzione del primo tratto di galleria da 100.000 mc di capacità utile sarebbe in ogni caso necessaria qualunque sia il sistema di approvvigionamento che in realtà verrà scelto. Ad esempio se si optasse per i desalinizzatori la presenza di 100.000 mc di serbatoio sarebbe utilissima per coprire il divario comunque esistente tra portata prodotta in quantità costante dai desalinizzatori e quella assorbita dall’utenza che è variabilissima.
F ) – La destagionalizzazione dei flussi turistici come rimedio anche del problema idrico E’ ben vero che con tale provvedimento gli inconvenienti sarebbero ridotti. Per avere un risultato completo bisognerebbe però destagionalizzare anche il tempo atmosferico. Invece l’Elba, per sua fortuna, sarà sempre caratterizzata da stagioni estive di bel tempo con piogge concentrate in autunno-nverno-primavera. Tale fatto, assieme all’inevitabile aumento della richiesta idrica futura ed all’altrettanto inevitabile carenza d’acqua che si verificherà negli anni a venire, rende necessario usufruire razionalmente prima di tutto delle risorse locali il che può aver luogo esclusivamente a mezzo di un grandissimo serbatoio.
Le mie conclusioni finali sul problema del rifornimento idropotabile elbano non possono che essere le seguenti.
A) – L’Isola d’Elba è un ambiente del tutto speciale che come tale non può trovare soluzione dei suoi problemi nella stessa maniera degli altri territori del continente. Anche il problema idrico richiede una soluzione speciale, studiata apposta per l’Elba e che si adatti alle caratteristiche del tutto particolari dell’Elba. Io credo che il grande serbatoio/galleria le possieda tutte.
B ) – Il problema idrico riveste un’importanza basilare per il futuro dell’Isola e quindi non si può trascurare alcuna delle strade che può portare alla soluzione definitiva e tra di queste figura sicuramente il grande serbatoio/galleria.
C ) – E’ necessario provvedere quanto prima alla costruzione di un primo tronco di serbatoio della lunghezza di circa 1 Km con cui si potrà constatare nella realtà quali siano i grandi vantaggi ottenibili nel mentre la presenza di una capacità di 100.000 mc circa che viene così ad essere realizzata costituirà in ogni caso una risorsa importantissima per l’isola d’Elba qualsiasi siano le future modalità della sua alimentazione idrica.
Marcello Meneghin

INDIETRO AVANTI

UN MAXI SERBATOIO SOTTERRANEO PER VINCERE LA GRANDE SETE DELL’ISOLA D’ELBA

 

serbatoio Isola d’Elba

A) PREMESSA

I quantitativi d’acqua necessari non solo per gli indispensabili usi potabili della popolazione residente e turistica ma anche per altre determinanti necessità della sua economia (irrigazione agricola, annaffiamento giardini e orti, usi industriali ed artigianali, docce, piscine, ecc.). la sua risoluzione, un tempo basata esclusivamente sulle risorse idriche locali, ha incontrato notevoli difficoltà per le caratteristiche climatiche e fisiche del territorio. in particolare la piovosità molto scarsa e quasi inesistente proprio nei periodi estivi di maggior richiesta d’acqua, in uno con una conformazione montagnosa i cui compluvi danno origine a fossi o rii completamente asciutti per la gran parte dell’anno, riducono notevolmente la possibilità di accumulo negli invasi naturali sotterranei di ravvenamento delle sorgenti e quella di soddisfacimento diretto delle altre necessità citate, nel mentre grandi quantitativi del prezioso elemento vengono scaricati a mare durante i brevi periodi di piogge intense. in anni relativamente recenti si è pensato di integrare la produzione locale data dai pozzi e dalle sorgenti con l’approvvigionamento esterno ottenuto tramite la tubazione sottomarina di collegamento con la terraferma e il trasporto con navi cisterna ma, ciononostante, la richiesta idrica non risulta pienamente soddisfatta e si verificano sovente dei periodi di crisi nei quali l’ente gestore degli acquedotti deve ricorrere al razionamento dell’acqua distribuita.
nella planimetria generale della fig. 1 allegata sono schematicamente rappresentate alcune possibilità di alimentazione idrica dell’elba. tra di esse solo la condotta di collegamento con il continente è un’opera realmente esistente ed è quella che contribuisce in maniera determinante, sia pure con crisi alterne, al soddisfacimento della richiesta idropotabile dell’ isola. le altre indicazioni si riferiscono ad ipotesi formulate in varie epoche ma che non hanno ancora trovato applicazione pratica. tali sono, come sarà più avanti spiegato, i bacini artificiali da realizzare mediante dighe di ritenuta  ed il bacino sotterraneo da costruire con diaframmi di impermeabilizzazione nella piana di marina di campo

 

Fig. n. 1 = Veduta panoramica dell’Isola cd’Elba con il tracciato della galleria serbatoio che viene qui proposto

E’ infine rappresentato il tracciato di massima del serbatoio/galleria che, circondando il Monte Capanne, costituisce l’oggetto precipuo del presente lavoro. Si tratta di un’opera totalmente sotterranea che, a prima vista, desterà scetticismo essendo normalmente destinata ad usi completamente diversi da quello qui previsto anche se, in realtà, la sua utilizzazione è abbastanza frequente. Si fa infatti notare come la maggior parte degli impianti idroelettrici a condotta forzata sotterranea siano muniti di vasche di espansione le cui caratteristiche costruttive e di funzionamento idraulico sono del tutto simili a quanto qui proposto. L’opera medesima non è in assoluto una novità nemmeno in campo acquedottistico in quanto risulta realizzata ed utilizzata da oltre mezzo secolo nell’acquedotto di Torino e in quello Campano per scopi idropotabili identici a quelli che di seguito si indicano nonché in analogo serbatoio/galleria costruito, in questi ultimi anni, nei pressi di Latina. A giudizio di chi scrive essa è invece atta ad affrancare l’isola da ogni assoggettamento esterno e ad offrire le più ampie garanzie di soddisfacimento del suo fabbisogno idrico futuro senza provocare danni di sorta nè all’ambiente né all’economia del territorio. Una sua precipua caratteristica che si vuole subito evidenziare è la possibilità di realizzazione dell’opera per stralci successivi tutti immediatamente funzionali e che consentono di dilazionare la spesa nel tempo offrendo immediati e notevoli vantaggi nell’approvvigionamento idrico dell’intera isola.

 

B) FABBISOGNO IDRICO E PIOVOSITA’

Fig. n. 2 = Diagramma giornaliero delle portate d’acqua potabile  che interessano l’Elba

Le grandezze in gioco nel rifornimento idrico dell’Isola d’Elba, sono approssimativamente rappresentate nel grafico della fig. 2 allegata.
Vi sono riportati i volumi d’acqua potabile effettivamente forniti all’utenza mese per mese durante una recente annata e quelli che, in via approssimativa, sarebbero necessari per soddisfare interamente la richiesta dell’utenza per i prossimi 10 anni ed infine i volumi medi di pioggia che sono caduti in questi ultimi anni nella zona ovest dell’Isola d’Elba, zona che interessa particolarmente le opere oggetto della presente relazione per una superficie di circa 30 chilometri quadrati contro i 223 chilometri quadrati dell’intero territorio dell’isola.
Balzano immediatamente agli occhi :
· il grande deficit esistente tra portata massima necessaria (circa 60.000 mc nel giorno di massimo consumo) e quella estiva ora disponibile che ammonta, al massimo, a circa a 35.000 mc al giorno;
· una consistente sovrabbondanza, rispetto a quelli necessari, dei volumi d’acqua di pioggia che precipitano annualmente in isola. L’Isola d’Elba dovrebbe quindi essere in grado di soddisfare autonomamente i propri fabbisogni idrici;
· Il notevole divario temporale tra il periodo di elevata richiesta idrica che ha luogo d’estate e quelli di abbondanti precipitazioni atmosferiche che, al contrario, si verificano statisticamente in tutti i periodi dell’anno fatta eccezione appunto per quelli estivi. Da tale fatto deriva la mancata alimentazione delle falde locali ed anche di quelle della Val di Cornia che attualmente fornisce agli acquedotti elbani la maggior parte dell’acqua e quindi il citato deficit idrico e le ripetute crisi del rifornimento idropotabile della popolazione.

Interessante anche il grafico della figura 3 nel quale gli stessi volumi giornalieri che si prevede necessari all’Elba per i prossimi 10 anni sono riportati in ordine decrescente, onde far risaltare le varie classi di consumo. Esse hanno la seguente consistenza:

Fig. 3 = Grafico giornaliero dei consumi idropotabili ordinati preogressivamente

· Le giornate di consumo elevatissimo (circa 60.000 mc giorno) sono molto poche e cioè circa 50 all’anno.
· Il consumo abbastanza elevato (45.000 mc giorno) si verifica mediamente per altre 30 giornate l’anno.
· Per ben 285 giornate dell’anno esaminato si avranno solo consumi bassi (17.000 mc/giorno circa) o bassissimi (10.000 mc/giorno).
Le conclusioni che si possono trarre sono:
1) L’isola d’Elba ha bisogno di un quantitativo d’acqua potabile molto elevato per un periodo assai breve ma che coincide con quello di scarse precipitazioni piovose.
2) I volumi d’acqua che piovono annualmente in isola, se non fossero temporalmente sfalsati rispetto al fabbisogno, sarebbero ampiamente sufficienti alla sua alimentazione idropotabile.
La soluzione del problema appare ovvia: immagazzinare durante i periodi di scarsi consumi l’acqua in esubero e conservarla per poterla utilizzare d’estate durante i brevi periodi di richiesta elevata.

C) I LAGHI ARTIFICIALI E LE ALTRE SOLUZIONI DELL’ENTE GESTORE

Tra le soluzioni che gli Enti addetti hanno in animo di adottare per la risoluzione del problema in argomento alcune sono basate, in maniera del tutto analoga a quanto forma oggetto del presente lavoro, sulla raccolta ed accumulo di grandi volumi d’acqua durante i periodi di pioggia intensa e di scarsi consumi.
Quella che raccoglie i maggiori consensi concerne due bacini artificiali da realizzare a mezzo dighe di ritenuta a Pomonte e Patresi (vedi planimetria generale fig. 1) e ritenuti atti a contenere i citati volumi d’acqua per utilizzarli nei momenti di maggior bisogno. Tali interventi, attuati con successo in altre località afflitte da carenza idrica, non sono, ad avviso di chi scrive, proponibili in quanto nel caso specifico dell’Isola d’Elba presentano i seguenti gravi inconvenienti:
· difficoltà di reperire ed espropriare aree adatte a ricavare grandi bacini superficiali;
· gravi danni all’ambiente causati dai laghi che d’estate devono essere svuotati onde utilizzarne l’invaso;
· pericolo di franamento delle sponde soggette a ripetuti invasi e svasi;
· rapido interramento del bacino e conseguente sua diminuzione della capacità utile;
· grandi perdite d’acqua causate dall’evaporazione;
· peggioramento delle caratteristiche organolettiche dell’acqua immagazzinata nei laghi superficiali;
· possibilità di atti vandalici
· trattandosi di bacini all’aperto soggetti a notevoli perdite per evaporazione non è consigliabile immettervi, come sarà proposto invece nel serbatoio/galleria, acqua potabile avente costi di produzione relativamente elevati.
Una seconda soluzione per raccogliere le acque di pioggia, ma che non ha avuto seguito, è quella descritta nel lavoro : “Uso degli acquiferi locali per la regolazione delle risorse idriche dell’Isola d’Elba” redatto da prof. Pier Gino Megale dell’Università di Pisa”. Essa prevede, come sarà meglio spiegato più avanti, di costruire un serbatoio sotterraneo da 2.000.000 mc di capacità utile tramite diaframmi di impermeabilizzazione che circondano la piana di Marina di Campo (vedi fig.1).
Gli altri interventi, già in via di parziale esecuzione o comunque di attuazione già decisa dagli enti preposti al servizio idrico dell’Elba, e cioè la costruzione di nuovi pozzi e l’installazione di impianti per la desalinizzazione di acque salmastre o di quelle marine mal si conciliano con le necessità dell’Isola in quanto non sono in grado di fornire portate rilevanti durante il breve periodo estivo. Sono invece atti, gli impianti di desalinizzazione, a fornire portate modeste ma costanti per tutto l’anno ed i pozzi a produrre acqua in tutti i periodi ma con esclusione di quelli estivi durante i quali la falda sotterranea riduce sensibilmente la sua producibilità. In periodi particolarmente siccitosi le falde idriche sotterranee dell’Isola d’Elba ed anche quelle della Val di Cornia accusano infatti degli abbassamenti di livello così marcati da provocare notevoli immissioni di acqua marina o salmastra che le rendono assolutanmente inutilizzabili ai fini potabili.
Una ulteriore proposta riguarda l’utilizzazione, sia ad uso potabile sia quale acqua grezza per usi vari come l’irrigazione e gli usi complementari di quelli potabili, delle acque restituite dalle fognature pubbliche sottoposte ad adeguato trattamento. Anche questa soluzione, spesso adottata in ottemperanza con le indicazioni delle leggi vigenti in materia di disciplina delle acque e quando si è in presenza di scarichi di grandi città aventi notevoli portate d’acqua reflua, mal si presta nel caso dell’Isola d’Elba a causa dell’eccessivo spezzettamento del servizio fognario che comporterebbe una miriade di piccoli impianti di trattamento di difficoltosa e onerosissima gestione cui deve aggiungersi, nel caso dell’acqua grezza, la necessità di costruire e gestire una doppia rete di distribuzione.
Il quadro del tutto negativo della reale situazione elbana è completo quando si consideri l’impossibilità di incrementare la fornitura d’acqua proveniente dalla terraferma e cioè dalla Val di Cornia essendo invece da prevedervi carenze idriche ancora più gravi di quelle attuali per motivi svariati tra cui:
· insufficiente producibilità delle fonti rispetto al fabbisogno dell’utenza che da esse dipende;
· concomitanza delle crisi estive della Val di Cornia con quelle Elbane;
· pericolo di inquinamento delle falde della Val di Cornia da boro;
· impossibilità di aumentare l’adducibilità dell’esistente condotta sottomarina di collegamento con la terraferma.
Per documentare lo stato di crisi della Val di Cornia basterà riportare integralmente la seguente frase riepilogativa delle indagini svoltevi dal CIGRI Consorzio Intercomunale per la Gestione delle Risorse Idriche: ” L’insieme delle conoscenze acquisite disegna un quadro di gravissima emergenza”.

D) DESCRIZIONE DELLE OPERE CHE FORMANO L’OGGETTO DEL PRESENTE LAVORO

II manufatto in progetto consiste in un grande serbatoio per acqua potabile da realizzare mediante escavo di una galleria di notevole sviluppo e di adeguata sezione nel materiale roccioso sottostante i monti Capanne e Perone dove sono più frequenti le piogge. La galleria, posta orizzontalmente alla quota di 150 metri sul mare, con il suo andamento planimetrico che circonda tutta la parte ovest dell’isola, consente di drenare e ricevere gran parte delle acque di pioggia che cadono in essa.

Fig. 4 = Planimetria della parte ovest dell^sola d’Elba

Le sue caratteristiche salienti possono essere così riassunte:
1 – si tratta di un’opera totalmente invisibile e che, pertanto, non arreca nessun danno al paesaggio dell’isola;
2 – il suo grande volume d’invaso consente di accumulare gran parte delle acque di pioggia relative al bacino imbrifero sotteso costituendo una riserva in grado di effettuare la compensazione trimestrale delle portate per usi potabili e per usi vari di oltre 250.000 abitanti equivalenti;
3 – il suo andamento plano-altimetrico consente, come sarà avanti descritto, una facile raccolta delle acque delle sorgenti, dei fossi distribuiti in tutta la zona e delle falde sotterranee, ivi esistenti e che attualmente si scaricano direttamente in mare senza che la loro presenza sia nota.
4 – La quota altimetrica del serbatoio/galleria consente di alimentare gran parte dell’utenza direttamente a gravità riservando il sollevamento tramite pompe alle sole aree abitate poste a quote elevate;
5 – Trattandosi di manufatto sotterraneo l’acqua accumulata può rimanervi per lunghi periodi al riparo da perdite per evaporazione e da agenti esterni vari come l’irraggiamento solare e la possibile immissione di inquinanti e conservare pertanto intatte le sue naturali doti di freschezza ed potabilità;
6 – Essendo formata da numerosi tronchi ognuno dei quali può funzionare indipendentemente dall’altro, sarà possibile effettuare alternativamente i lavori di manutenzione e pulizia senza interrompere l’alimentazione dell’utenza.
7 – Sarà sempre possibile immettere nel serbatoio/galleria eventuali volumi d’acqua provenienti da fonti diverse da quelle descritte come ad esempio quelli addotti dalla Val di Cornia o raccolti da sorgenti poste al di fuori del bacino imbrifero sotteso dalle opere in progetto oppure emunte tramite pompe sommerse da pozzi terebrati nelle falde profonde e che risultino in eccedenza rispetto al fabbisogno momentaneo.
8 – Le opere potranno essere costruite per stralci funzionali in modo da diluire la spesa nel tempo. ( Vedi articolo sulle prome opere da eseguire )
9 – Il serbatoio, essendo assolutamente inaccessibile, è salvaguardato da possibili atti di vandalismo.
10 – L’ubicazione del grande serbatoio nella parte occidentale dell’Isola cioè nel punto diametralmente opposto rispetto a quello di arrivo della condotta di adduzione dell’acqua dalla Val di Cornia, gli conferisce una ottima funzionalità idraulica di compensazione delle portate sia nell’attuale ed autonomo assetto acquedottistico sia in quello futuro integrato nel competente ATO (vedi art. P).
11-L’accumulo di grandi quantitativi d’acqua piovana contribuisce a lenire i danni provocati in caso di eventi piovosi particolarmente intensi.

 

E) CARATTERISTICHE GENERALI DEI MANUFATTI IN PROGETTO

Il serbatoio/galleria consiste principalmente un manufatto a sezione circolare del diametro interno di 10 m. e ad andamento planimetrico ad anello che circonda, a notevole profondità sotto il suolo, il territorio ovest dell’isola e le sue alture tra le quali spiccano il Monte Capanna e Perone aventi rispettivamente una quota alla vetta pari a 1018 e 630 metri sopra il livello del mare ( vedi fig. 4 = Planimetria del serbatoio-galleria ). Lungo il perimetro esterno ed in corrispondenza dei principali avallamenti del suolo, sono previsti dei vertici planimetrici nei quali l’opera affiora in superficie rendendo estremamente agevole, tramite modeste opere di presa superficiali, la raccolta ed immissione dei fossi o dei rii previa eventuale decantazione, filtrazione e disinfezione da eseguirsi presumibilmente in galleria, nonché l’immissione diretta delle acque in esubero di qualunque altra provenienza come pozzi o acquedotti locali o quella proveniente dalla Val di Cornia. Altra caratteristica estremamente favorevole è data dalla possibilità di captare lungo il tracciato della galleria le acque di falda presenti nel sottosuolo e che attualmente si scaricano a mare senza nessuna loro segnalazione esterna.

L’andamento planimetrico della galleria che attraversa perpendicolarmente tutti i compluvi e le vallette esistenti nel territorio ( vedi fig. 4 = Planimetria del serbatoio-galleria ), garantisce che tutte le vene idriche che si sottopasseranno durante il suo scavo finiranno, grazie alla presenza di faglie o fratture del terreno roccioso, per essere richiamate all’interno come sempre succede nella esecuzione di lavori del genere. Sarà quindi estremamente agevole creare nei punti di intersezione con la falda le opere per la raccolta e regolazione dell’acqua ferma restando la possibilità della loro intercettazione e deviazione, in caso di bisogno, nella tubazione di drenaggio esterna (vedi fig. 8 =particolari delle immissioni in galleria dell’acqua di falda). Ogni immissione dovrà infatti essere tenuta sotto controllo quantitativo e qualitativo tramite apposite apparecchiature automatiche di misura e trasmissione continuativa dei dati. La presenza di faglie e fratture nel materasso roccioso attraversato dal serbatoio/galleria e che possono assicurare l’immissione, diretta o tramite le opere specifiche di cui al seguente art. G, delle acque di falda in galleria, è documentata nella pubblicazione del Dipartimento di Scienze della Terra – Università di Firenze “LE RISORSE IDRICHE DELL’ISOLA D’ELBA” di Bencini, Pranzini, Giardi e Tacconi =Tacchi Editore – Pisa- contenente le indicazioni tratte da analisi stereoscopica delle foto aeree del territorio isolano

Il serbatoio/galleria ricavato per tutto il suo sviluppo nello strato roccioso, sarà interamente rivestito in calcestruzzo armato al fine di garantirne la tenuta idraulica ed altresì creare una efficace protezione da ogni infiltrazione indesiderata (vedi fig. 7 = sezione tipo).. Nella parte inferiore mediana troverà posto una canaletta interna atta a raccogliere ed evacuare le sabbie di deposito durante i periodici lavori di pulizia e da eseguirsi mediante getto d’acqua fornita dalla tubazione predisposta lungo la volta. Lungo la volta sarà installata la linea elettrica di illuminazione e di alimentazione di eventuali attrezzi necessari per i lavori di manutenzione, i cavi per il comando e controllo delle apparecchiature e per la trasmissione dei dati, la tubazione per il rifornimento dell’acqua in pressione e quella per l’aria compressa, dove ritenuta necessarie. Nella parte inferiore e all’esterno del rivestimento in calcestruzzo troverà posto una tubazione di drenaggio indispensabile per l’evacuazione delle acque di infiltrazione durante i lavori di costruzione e che, in corso di esercizio, servirà alla eliminazione di eventuali acque esterne alla galleria che non avessero i requisiti di accettabilità, e sia di quelle acque che fossero comunque da evacuare sia stabilmente che temporaneamente. La galleria avrà andamento altimetrico orizzontale con platea a leggera pendenza verso i punti di imbocco.
Le considerazioni che hanno portato alla decisione di fissare, in prima approssimazione e salvo migliori determinazione da farsi in sede di progettazione esecutiva, la quota altimetrica del serbatoio a circa 150 metri sul mare sono le seguenti:
1) – la quota deve essere il più bassa possibile al fine di allargare al massimo la superficie del bacino imbrifero sotteso e aumentare quindi le possibilità di raccolta d’acqua piovana;
2) – la quota di imposta del serbatoio deve, al tempo stesso, essere sufficientemente elevata per dare la possibilità di distribuire l’acqua del suo invaso direttamente a gravità alla maggior parte dell’utenza da alimentare.
3) – la scelta altimetrica definitiva deve consentire di immettere l’acqua direttamente nell’esistente rete di adduzione che collega tra di loro tutti gli acquedotti dell’Isola e quindi di alimentare l’intera isola fin dalla prima fase di esercizio utilizzando solo opere esistenti. E’ da rilevare come alla data attuale l’acqua proveniente dalla Val di Cornia una volta giunta all’Elba dopo il percorso sottomarino, percorre l’intera isola da Est verso Ovest tramite opere comprendenti condotte, serbatoi e impianti di sollevamento funzionanti tutti in serie ed aventi il loro punto finale di arrivo in un serbatoio posto in prossimità ed alla stessa quota dei quello sotterraneo in progetto. Fatte salve le necessarie verifiche sulla scorta dei dati reali, è prevedibile che, una volta costruito il nuovo serbatoio sotterraneo ed in attesa della realizzazione della nuova potenziata rete di adduzione e di distribuzione, si possano utilizzare gli stessi impianti a ritroso e cioè da ovest verso est e quindi alimentare da subito tutti gli acquedotti locali.

Considerato che una corretta concezione della rete di distribuzione dell’acquedotto in una zona altimetricamente varia come quella dell’isola richiede comunque delle reti distinte per fasce altimetriche omogenee aventi ciascuna un’altezza massima di circa m. 80 al fine di assicurare corrette pressioni di funzionamento, considerato altresì che la prima fascia, quella che dal livello del mare a circa 100 metri sul mare è la più importante in quanto comprende la maggior parte del territorio abitato da servire, si è pensato di privilegiare la sua alimentazione in diretta e a gravità tramite le condotte di adduzione che si dipartono a raggiera dal serbatoio/galleria, prevedendo che solo gli altri centri abitati posti a quota più elevata siano serviti mediante risollevamento meccanico dell’acqua.
In definitiva, con serbatoio a quota 150 m.s.m. e definita in 50 m. la perdita di carico per il trasporto dell’acqua da serbatoio alle singole reti dei centri posti nella fascia inferiore tramite le condotte di adduzione che si dipartono a raggiera dal serbatoio stesso, rimangono disponibili 100 metri di carico idraulico necessario e sufficiente per il funzionamento a gravità delle reti di distribuzione medesime. In altre parole con la soluzione prospettata è possibile effettuare raccolta, accumulo e trasporto dell’acqua fino al domicilio della stragrande maggioranza degli utenti dell’isola d’Elba senza necessità alcuna di pompaggio ma interamente a gravità
3) – il carico definito come sopra rende possibile anche l’adduzione, sempre a gravità, dei volumi d’acqua diretti ai centri delle fasce superiori ma con la pregiudiziale della loro consegna in una vasca di raccolta posta ad una quota altimetrica pari a circa 100 msm. e nella quale dovranno pescare le pompe di risollevamento di cui ognuno di tali centri dovrà essere dotato per la distribuzione dell’acqua al domicilio dei propri utenti: si raggiunge il duplice scopo di dotare questi ultimi di quella pressione di esercizio che meglio si adatta alla loro posizione altimetrica estremamente variegata e di contenere la spesa energetica di risollevamento dell’acqua, considerato che si tratta in genere di centri di piccola entità aventi esigui fabbisogni idropotabili.
4) – le singole reti locali che attualmente usufruiscono di fonti proprie, possono, nei periodi di scarso consumo dei loro utenti (ad esempio durante le notti delle stagioni invernali), immettere nel serbatoio/galleria la portata in eccedenza rispetto al fabbisogno, tramite funzionamento a ritroso delle descritte condotte che, in questo caso, vi confluiscono a raggiera. In prima fase l’immissione in oggetto potrà aver luogo, per quanto detto, usufruendo della esistente rete acquedottistica di adduzione.
In sede di progettazione esecutiva la quota definitiva del serbatoio/galleria sarà, come tutte le altre caratteristiche costruttive, ridefinita sulla base di approfonditi studi. La quota potrà quindi subire modifiche, anche sostanziali, tenute presenti le conseguenze, sia negative che positive, che ne deriveranno in termini di maggiore o minore estensione del bacino imbrifero sotteso, di estesa della galleria, di qualità dei materiali incontrati, di pressione di funzionamento della rete di distribuzione, di necessità di pompaggio dell’acqua, ecc. ecc.
L’aspetto negativo dell’insieme di opere che il presente lavoro prevede, è rappresentato dalla necessità di smaltire lo smarino di galleria e cioè un quantitativo di oltre due milioni di metri cubi di roccia proveniente dallo scavo. Uno studio approfondito delle modalità esecutive delle opere potrebbe però risolvere brillantemente anche tale problema. Il territorio attraversato, fatti salvi i migliori accertamenti da effettuare in sede di redazione del progetto esecutivo, è infatti composto per la maggior parte da ottimo materiale lapideo che, oltre a fornire le necessarie garanzie circa la fattibilità tecnica della galleria e la stabilità dei terreni durante e dopo la esecuzione dei lavori, potrebbe anche costituire una importante fonte di materiale inerte per calcestruzzi e in genere da costruzione o per rilevati stradali, per la sistemazione di piazzali e campeggi ecc. ecc, sabbie per il ripascimento di arenili erosi dalle mareggiate, se non addirittura di meravigliosi graniti da lavorazione del tutto analoghi a quelli prodotti nelle cave di S. Piero. Il tutto come sarà meglio spiegato più avanti.
E’ inutile sottolineare come la progettazione esecutiva dell’opera debba essere, in ogni caso, preceduta da studi, indagini, rilievi, sondaggi, accertamenti ecc. ecc. atti a verificare le condizioni di fattibilità delle opere, il loro rapporto costi/benefici, le disponibilità idriche effettive del territorio, ed a definire le soluzioni tecnico/economiche ottimali di tracciato, di dimensionamento ed in genere di costituzione dei vari manufatti. Da notare come il tracciato definitivo sotterraneo del serbatoio/galleria sia molto elastico non essendo legato a particolari vincoli planimetrici fatta eccezione soltanto a quello di presentare delle finestre di accesso dall’esterno disposte (se necessario anche in derivazione dall’asse della galleria principale) in modo da facilitare lo scavo della galleria e di consentire l’immissione al suo interno delle acque raccolte in superficie. Il tracciato può pertanto svolgersi seguendo quei percorsi che dagli studi preventivi risulteranno i più idonei per la funzionalità idraulica delle opere e per la natura del sottosuolo e la presenza di faglie o fratture della roccia.

F) ELEMENTI ESSENZIALI DI DIMENSIONAMENTO DEI MANUFATTI

I principali dati sono i seguenti:
– bacino imbrifero sotteso : circa mq 40.000.000
– altezza minima di pioggia annua prevedibile: mm 500
– volume minimo d’acqua di pioggia annua totale: mc 20.000.000 suddiviso come segue:
volume pioggia disperso per evaporazione e traspirazione 58%: mc 11.600.000
volume deflussi superficiali 29%: mc 5.800.000
volume deflussi sotterranei 13%: mc 2.600.000
Totale: mc 20.000.000
– volume annuo raccolto dalla galleria mc 5.800.000 + 2.600.000 = mc 8.400.000
– volume trimestrale medio mc 8.400.000 / 4 = mc 2.100.000
– popolazione equivalente da alimentare: abitanti 250.000 nei periodi di maggior afflusso turistico e abitanti 50.000 nelle stagioni morte
– fabbisogno giornaliero nei giorni di punta: n. 250.000 x 0.300=mc 75.000 negli altri giorni : 50.000 x 0,300 = mc 15.000
– volume necessario per la compensazione trimestrale: gg 90 x mc 75.000 x 0.22 = mc 1.500.000
– volume utile di invaso del serbatoio/galleria: ml 25 600 x mq 76.20 = mc 1.950.000 corrispondente circa all’apporto medio trimestrale di pioggia (mc 2.100.000)

 

G) L’INCREMENTO DELLA PORTATA D’ACQUA POTABILE DA ACCUMULARE IN SERBATOIO

Poiché il serbatoio/galleria, al contrario di altre soluzioni come quelle degli invasi da ricavare mediante dighe di ritenuta o diaframmi sotterranei, è destinato a contenere acqua potabile cioè pronta per essere consegnata, senza alcun trattamento, all’utenza, devono essere poste in atto tutte le possibili attività volte alla captazione di tale prezioso elemento. Tra di esse assume una grande importanza l’immissione diretta in galleria delle falde soprastanti che avrà luogo man mano che procederà lo scavo senza che sia necessario alcun intervento particolare. Potranno però verificarsi dei casi in cui l’immissione in serbatoio di importanti quantitativi di acqua naturalmente potabile contenuta in sacche permeabili o semipermeabili di terreno soprastanti la galleria non abbia luogo per motivi vari come, ad esempio, la mancata fratturazione della roccia di estradosso della galleria che la rende assolutamente impermeabile, la particolare ubicazione planimetrica della sacca, la presenza, nella sacca medesima, di vie di fuga dell’acqua verso valle ecc. ecc. In tali casi sarà possibile favorire la raccolta di detti volumi d’acqua tramite perforazioni della roccia atte a realizzare il mancato collegamento idraulico o tramite diaframmi di impermeabilizzazione del bordo di valle della sacca atti ad eliminare le fughe descritte.  Qualora sussistessero valide motivazioni per non alterare la falda soprastante la galleria, i moderni mezzi di scavo permettono di manutenere  sul fronte di scavo una pressione artificiale in modo da lasciare indisturbate le falde per tutta la durata dei lavoro.

In tutti i casi esaminati si tratta sempre  di opere completamente sotterranee prive di impatto ambientale.

 

H) LA CAPTAZIONE ED IMMISSIONE IN SERBATOIO DELL’ACQUA DEI FOSSI

L’apporto principale di acqua potabile da immettere nel serbatoio/galleria è senz’altro quello fornito, durante i periodi di pioggia intensa, dai fossi e quindi deve essere posta una cura particolare nella realizzazione delle opere atte allo scopo. Esse comprendono una presa da costruire nel fosso e costituita da una briglia e da un pozzetto di raccolta dal quale si diparte una condotta di diametro adeguato all’adduzione dell’acqua alla finestra di accesso alla galleria. La finestra, cioè quel tratto di galleria del diametro di 10 m.e di lunghezza variabile, che collega l’imbocco esterno con la galleria/serbatoio vero e proprio, (vedi figg. 5 e 6 ) può alloggiare, se ritenuto in fase di progettazione esecutiva necessario, tre strutture idrauliche poste una di seguito all’altra a partire dall’interno verso l’esterno:
– la vasca di decantazione dei materiali in sospensione nell’acqua costituita da un primo tronco di galleria della lunghezza massima di circa 100 m;
– la sala filtri che occupa il secondo tronco della lunghezza di circa 20 m;
– la sala pompe posta vicino all’imbocco esterno.
L’acqua del fosso, captata ed immessa nel decantatore come indicato, vi rimarrà per il tempo necessario perché il materiale in sospensione vi sia depositato; attraverso appositi manufatti di sfioro passerà poi nei filtri e quindi nelle sala pompe dove sarà provveduto all’immissione del cloro di disinfezione e quindi al sollevamento per la definitiva adduzione, con percorso a ritroso, nel serbatoio/galleria, dove, come più volte indicato, dovranno essere immesse solo acque potabili.
La canaletta, ricavata nella parte inferiore della finestra, consentirà il periodico asporto del materiale di deposito nonché il lavaggio della vasca di decantazione e dei filtri da eseguirsi come di consueto in installazioni del genere.
Da rilevare come tutte le opere descritte, con la sola eccezione della briglia di presa, siano sotterranee e quindi presentino tutte gli stessi requisiti del serbatoio principale nei confronti dell’impatto ambientale.
In alternativa a quanto precede la briglia di presa e le opere per la decantazione, filtrazione e disinfezione potranno, se particolari condizioni lo richiederanno, essere realizzate indipendentemente dalla galleria sia all’aperto sia in caverna. Potranno, ad esempio, essere ubicate ad una quota altimetrica superiore di quella del serbatoio/galleria con il vantaggio di evitare il sollevamento delle acque, oppure ad una quota inferiore allo scopo di poter aumentare, a fronte dell’onere di dover pompare l’acqua captata, la superficie del bacino imbrifero sotteso.
Le decisioni in merito alla raccolta delle acque dovrà in ogni caso essere preceduta da approfondite indagini sulla piovosità reale, sulle modalità di scolo naturale delle acque fosso per fosso e sulle modalità da seguire per una efficace loro raccolta. Da tali indagini potrà anche derivare la necessità di predisporre dei bacini di accumulo rapido delle acque grezze ben più capaci di quelli ricavabili, come indicato sopra, nelle finestre di accesso della galleria il che comporta una sostanziale modifica delle opere come sarà meglio descritto nei capitoli seguenti.

 

I) I SERBATOI SUPPLEMENTARI PER ACQUA GREZZA

Come già indicato le acque di pioggia che si raccolgono nei compluvi vengono, tramite una briglia posta di traverso alla valletta, deviate e quindi addotte alle vasche di decantazione ricavate all’interno delle finestre di accesso alla galleria/serbatoio vera e propria.
E’ evidente che i volumi d’acqua che si raccolgono sia pur per tempi brevi ma con notevole intensità nei fossi principali che sottendono vasti bacini imbriferi, richiedono invasi altrettanto notevoli che, come tali, potrebbero non essere però compatibili con le citate finestre di accesso. D’altro canto lo smaltimento dei depositi necessario per la pulizia dei decantatori impone di non eccedere nella loro lunghezza, fissata in circa 100 metri massimi.
Da tali considerazioni potrebbero, in sede di progettazione esecutiva, derivare modifiche sostanziali delle vasche di raccolta che da semplici strutture di decantazione delle acque, come previsto, potrebbero invece assumere la caratteristica di veri e propri serbatoi supplementari per acqua grezza. Nel caso, abbandonata l’idea di utilizzare la finestra, dovrà essere prevista la costruzione, a lato di ognuno dei fossi principali, di un serbatoio sotterraneo di grandi dimensioni e posto a quota sufficientemente elevata rispetto alla galleria per consentire lo svolgimento a gravità di tutto il processo depurativo e di adduzione dell’acqua: Essendo ogni serbatoio dal punto di vista idraulico totalmente a sé stante, potrà avere quelle dimensioni, forma, ubicazione che meglio si adatteranno alle circostanze locali sia dal punto di vista idraulico che da quello costruttivo.
Eccezionalmente, quando le condizioni idriche dei luoghi lo richiederanno, il serbatoio in argomento potrà essere costruito anche a quote notevolmente inferiori di quelle della galleria/serbatoio fatta salva, in tal caso, la necessità di prevedere il necessario sollevamento delle acque dopo depurazione.
Ogni serbatoio, con la sua notevole capacità ed essendo normalmente vuoto, resta pronto ad accogliere le acque intense che percorrono il fosso di sua competenza e che vi sono immesse nello stato in cui si trovano cioè torbide avendo subito soltanto la eliminazione delle ghiaie avvenuta ad opera del piccolo invaso posto a monte dell’opera di presa. Viene così attuata non solo la raccolta, in grandi quantitativi, della preziosa acqua piovana ma anche la laminazione delle piene e quindi migliorata la salvaguardia dei territori di valle dai danni che le alluvioni vi provocano spesso. Terminato l’evento piovoso ed avendo accumulato grandi volumi d’acqua, il serbatoio avrà, nelle giornate successive, tutto il tempo per dar corso al processo di decantazione, filtrazione e disinfezione per poter, una volta svuotato per averla scaricata nella sottostante galleria/serbatoio, essere pronto ad accogliere nuova acqua di pioggia.
I serbatoi per acqua grezza di cui si discute costituiranno, nel loro insieme, un notevole volume di invaso che rientra nel bilancio totale dei volumi utili per la compensazione trimestrale delle portate Si deve infatti tener presente che, di regola, essi sono destinati a restar vuoti in attesa della pioggia ma una volta raggiunto il massimo livello con l’acqua immessa nella galleria/serbatoio d’acqua pura, essi possono invece rimanere pieni e costituire quindi un importante volume integrativo da utilizzare anche a notevole distanza di tempo. In sede di definizione progettuale delle opere si potrà, grazie al contributo dato dai serbatoi d’acqua grezza in parola, assegnare alla galleria/serbatoio un volume utile più contenuto di quanto descritto ai capitoli precedenti al limite eccedendo nel volume integrativo dei serbatoi d’acqua grezza. I vantaggi ritraibili in tal caso saranno, come meglio spiegato nel capitolo seguente, notevoli.

L) VARIANTE DELLE OPERE PRINCIPALI CONSEGUENTE ALLA REALIZZAZIONE DEI SERBATOI D’ACQUA GREZZA

Una delle varianti alle opere principali dovuta alla presenza dei serbatoi d’acqua grezza descritti al capitolo precedente è quella basata sulla suddivisione del volume totale di invaso, in via approssimativa stimato in 2.000.000 di metri cubi utili, in due porzioni uguali, delle quali la prima, destinata a contenere acqua pura, è costituita dalla galleria/serbatoio il cui diametro può essere ridotto dai previsti 10 m. a soli 7 m. sufficienti per ottenere, con l’estesa totale prevista in 25 Km circa, il predetto volume utile di mc 1.000.000. La seconda porzione, stimata anch’essa in 1.000.000 di mc sarà realizzata a mezzo dei serbatoi d’acqua grezza che in via preliminare, potranno, ad esempio, essere in numero di 10 unità ognuna delle quali comprendente un vano ricavato nel sottosuolo roccioso con pianta circolare o quadrata della superficie di circa m 35 x 35 ed altezza di circa m 11 e munito di propria finestra per accedervi dall’esterno. L’ ubicazione plano altimetrica sarà definita, serbatoio per serbatoio, in modo che sia facilitato lo svolgimento delle complesse funzioni che è chiamato a svolgere e cioè la raccolta delle acque di uno o di più fossi ubicati nelle vicinanze, la decantazione ed immissione dell’acqua filtrata e disinfettata nella galleria/serbatoio direttamente a gravità evitando quindi il suo sollevamento meccanico, ed infine l’estrazione del prezioso granito di cui è costituito il sottosuolo attraversato e che richiede lavorazioni del tutto particolari .
Ogni serbatoio, dotato ovviamente di tutte le strutture edilizie necessarie per la stabilità delle pareti e della volta di copertura,. avrà, analogamente a quanto precedentemente indicato per la galleria/serbatoio d’acqua pura, il paramento interno interamente rivestito in calcestruzzo armato allo scopo di garantirne la tenuta idraulica. Come già detto, potranno eccezionalmente essere previsti serbatoi analoghi a quelli in argomento ma posti lontano dalla galleria/serbatoio onde soddisfare a particolari esigenze . Dovranno, in tal caso, essere adottate delle modalità altrettanto particolari come il pompaggio meccanico dell’acqua captata e/o la costruzione di adeguate condotte di adduzione per consentire comunque il recapito finale dell’acqua depurata nella galleria/serbatoio. Nulla vieta che, nei fossi minori, la raccolta e decantazione dell’acqua sia attuata utilizzando la finestra di accesso come previsto nei precedenti capitoli ed evitando quindi la costruzione del serbatoio supplementare. Anche il volume dei piccoli decantatori così previsti rientra nel bilancio totale dei volumi di invaso utili ma il loro ammontare è così modesto da non meritare, in questa sede, alcuna menzione.

 

M) VARIANTE CON DUE SEMIBACINI PER ACQUA POTABILE E GREZZA E CON EVENTUALE PRODUZIONE DI ENERGIA ELETTRICA

Una interessante variante costruttiva e di esercizio in alternativa alla precedente di cui ai cap. I-L che aveva per oggetto i serbatoi supplementari per acqua grezza, é quella basata sulla suddivisione della galleria/serbatoio in due grandi semibacini a sezione semicircolare oppure a due circonferenze affiancate e separate da un setto interno verticale che la percorre in mezzeria per tutti i suoi 25 km di estesa. Se ne verrà dimostrata la convenienza, potranno essere previste anche due gallerie separate ed uguali tra di loro, ciascuna del diametro di 3.60 m e necessarie per avere un volume utile complessivo pari ai 2.000.000 mc richiesti. La soluzione a gallerie separate, a fronte di un indubbio maggior onere economico di costruzione, presenta il vantaggio di consentire l’impiego di macchine di scavo e rivestimento di dimensioni più contenute e, qualora se ne presentasse la necessità, di seguire due tracciati diversi e quindi raggiungere con le gallerie punti di particolare interesse.
Nel primo sottobacino, destinato all’accumulo dell’acqua grezza raccolta dai fossi, verranno ricavati, tramite alcuni setti trasversali, dei brevi tronchi posti in prossimità degli imbocchi esterni e destinati ad accogliere l’acqua non appena captata e a conservarla per il tempo necessario alla decantazione del materiale in sospensione. Da quì essa sfiorerà nella restante parte dello stesso semibacino, per restarvi poi a lungo prontamente disponibile per le diverse e possibili destinazioni.

Potrà essere, in dettaglio, derivata ed addotta all’utenza direttamente a gravità, nello stato in cui si trova e tramite una appropriata rete d’acqua grezza che raggiunga almeno i centri più vicini della zona ovest dell’Isola, per gli usi di irrigazione di orti o giardini o per quelli complementari come lavaggi, raffreddamenti, pulizia strade e fognature ecc. ecc. In alternativa il liquido accumulato potrà invece essere immesso, assieme alle altre acque potabili e quindi dopo aver subito il necessario processo di filtrazione e disinfezione, nel secondo semibacino dove costituirà la indispensabile riserva d’acqua potabile in grado di essere distribuita, sempre con funzionamento a gravità, fino al domicilio dell’utenza di tutta l’Isola d’Elba.
Questi gli usi principali cui sarà normalmente destinata l’acqua raccolta dai fossi. Esiste una ulteriore possibilità destinata a svolgere un ruolo importante nell’economia di gestione del servizio idrico e cioé quella della produzione di energia elettrica tanto più preziosa in quanto, grazie al grande volume di invaso, non é in alcun modo vincolata ad orario. Il serbatoio/galleria, dimensionato per il periodo critico estivo e, con ulteriore cautela, sulla base della piovosità minima, nelle restanti stagioni e in tutti i casi di piovosità normale o medio-alta, risulterà nettamente esuberante e quindi, con la sola esclusione del periodo estivo, all’Elba si renderanno disponibili ingenti quantitativi di acqua che, con un salto di 150 m., potranno essere convenientemente utilizzati per la produzione di energia-elettrica.
Da rilevare come alcuni fossi, ubicati all’interno del bacino imbrifero del serbatoio-galleria, nel periodo invernale mantengano per mesi e mesi una portata continua che, opportunamente captata ed immessa nel semibacino d’acqua grezza, costituisce da sola una importante risorsa idrica interamente sfruttabile per la citata produzione di energia elettrica.
La presente variante riguarda, in definitiva, la creazione di due sottobacini con le seguenti diversificate modalità di utilizzazione:
a) Primo sottobacino : accumulo di acqua grezza da sottoporre alla sola decantazione dei materiali in sospensione per un volume idrico totale pari a circa un milione di mc che potrà, a seconda delle necessità contingenti, essere in tutto o in parte distribuita nello stato in cui si trova, e, in alternativa, essere trattata e quindi trasferita nell’altro semibacino per entrare a far parte del volume d’acqua potabile pronto ad entrare nelle varie reti di distribuzione, oppure, terza ed ultima possibilità, essere usato per la produzione di energia elettrica.
b) Secondo semibacino. Accumulo di acqua potabile di diversa provenienza come acque naturalmente potabili delle falde attraversate con la galleria, acque provenienti da pozzi, sorgenti o acquedotti esistenti ed infine acqua derivata dal sottobacino n. 1) e preventivamente potabilizzata. L’intero volume idrico, pari anche in questo caso a circa un milione di mc e, soprattutto nel periodo estivo, integrato come detto dall’acqua grezza potabilizzata per un volume pari, al limite massimo di un altro milione di mc, rimane in quota esclusivamente ad uso potabile dell’intera Isola. Da rilevare come la favorevole circostanza di poter produrre energia elettrica sia dovuta a due fattori concomitanti all’ Elba e ciooè da un lato alla ristretta concentrazione nel periodo estivo dei forti consumi idrici che lascia disponibili per tutto il resto dell’anno ingenti volumi dell’acqua accumulata nel grande serbatoio/galleria e quella continua fluente nei fossi e, dall’altro lato, alla notevole estesa longitudinale della galleria che le permette di sottendere un bacino molto ampio della zona ovest dell’Isola e quindi di poter usufruire di buona parte delle precipitazioni piovose che in tale zona sono particolarmente abbondanti.
Si tratta di un vantaggio in più offerto dal grande serbatoio/galleria che, in sede di progettazione esecutiva varrà la pena di sottoporre ad un’attenta analisi.

N) FATTIBILITA’ DELLE OPERE IN PROGETTO

L’esame di alcuni elementi relativi ai problemi idrici dell’Elba e totalmente estranei al presente elaborato può chiarire alcuni aspetti delle proposte tecniche avanzate.
Ad esempio nel già citato studio effettuato nell’anno 1998 dal dott. Prof. Pier Gino Megale del Laboratorio Nazionale dell’Irrigazione “P. Celeste” Università degli studi di Pisa intitolato “USO DEGLI ACQUIFERI LOCALI PER LA REGOLAZIONE DELLE RISORSE IDRICHE DELL’ISOLA D’ELBA “, trovano sommaria corrispondenza gran parte delle grandezze esposte nel presente lavoro (fabbisogno idropotabile, previsione delle piogge, volume da assegnare al serbatoio di compenso ecc.) e vengono formulati i seguenti concetti di base:
a) Gran parte degli inconvenienti dell’attuale sistema di rifornimento idropotabile dell’Elba sono dovuti agli sfasamenti temporali che si verificano tra punte di consumo e portate disponibili;
b) I volumi d’acqua di pioggia che annualmente precipitano in isola ,se razionalmente utilizzati, sono sufficienti per soddisfare il fabbisogno idropotabile ed irriguo dell’isola;
c) Le risorse locali dell’Isola d’Elba vengono utilizzate come integrative delle forniture del continente, facendo l’opposto di quello che sarebbe logico immaginare
d) Per risolvere il problema è necessario costruire un serbatoio in grado di accumulare almeno 2 milioni di mc d’acqua.
e) Vista l’impossibilità di creare un bacino in superficie è necessario che il nuovo serbatoio sia ricavato nel sottosuolo.
E’ superfluo rilevare come le affermazioni indicate siano le stesse poste a base delle proposte tecniche qui formulate e che quindi confermino la validità delle scelte operate. Da notare come la brillante soluzione proposta dal Megale e consistente nella costruzione di un serbatoio sotterraneo naturale tramite diaframmi di impermeabilizzazione continui lungo un tratto di costa atti a contenere i necessari volumi d’acqua, per ammissione dell’autore medesimo, presti il fianco a pericoli come la vulnerabilità della falda ed il mancato consolidamento del terreno mentre  tali pericoli non sussistano per il serbatoio qui proposto che, essendo totalmente rivestito in calcestruzzo, consente di tenere sotto controllo ogni immissione d’acqua, nel mentre non viene arrecato alcun danno al sottosuolo attraversato. Il serbatoio-galleria in progetto presenta anche il vantaggio di trovarsi ad una quota sufficiente per alimentare a gravità gran parte degli utenti dell’intera isola mentre quello naturale descritto si trova al di sotto del livello del mare e pertanto richiede il sollevamento di tutta l’acqua a mezzo pompe. Seri dubbi potrebbero essere inoltre avanzati circa le garanzie di impermeabilità di tale serbatoio naturale . Da non dimenticare la caratteristica fondamentale del serbatoio/galleria che è quella di essere destinato a contenere acqua potabile per la quale, al contrario dell’altra soluzione, non è necessario alcun trattamento prima di distribuirla agli utenti.
Anche nell’opera “Le risorse idriche dell’Isola d’Elba” di Bencini A.,Giardi M., Pranzini G. ed altri edita nel 1985 da Tacchi Editore – Pisa, trovano conferma i dati idrologici del presente lavoro.
Uno studio serio e completo sulle possibilità di reperire in Isola venne inoltre eseguito dall’esperto geologo elbano Alberto Segnini il quale dimostro’ come l’acqua esistente poteva essere del tutto sufficiente per l’intera isola.
Altri avvenimenti dai quali è possibili ritrarre utili indicazioni sono le recenti alluvioni che, oltre a confermare il verificarsi in isola di notevoli precipitazioni piovose, fanno considerare estremamente utile la costruzione di un grande bacino come quello in progetto che, con la sua notevole capacità di invaso, è in grado di laminare, almeno in parte, le piene delle valli limitando i danni provocati dalle acque che altrimenti scorrerebbero in superficie.
Utili deduzioni si possono infine trarre dalla constatazione che in tutti i lavori di scavo di gallerie simili a quella qui proposta si verifica il fenomeno, di norma fonte di grandi difficoltà per la prosecuzione dei lavori ma in questo caso provvidenziale in quanto facilita il reperimento delle indispensabili fonti di rifornimento idrico, della immissione nel cunicolo di scavo di tutte le acque esterne che si trovano nel territorio soprastante. Lo stesso fenomeno si è verificato all’Elba negli anni ’60 quando la Montecatini ha costruito alcune gallerie nella valle di Ortano per ricerca di minerali. In tale occasione i quantitativi d’acqua richiamati all’interno furono così rilevanti da costringere la Società ad abbandonare il lavoro.

O) ORDINE DA TENERSI NELL’ESECUZIONE DEI LAVORI

La notevole mole delle opere in progetto assieme alla necessità di affinarne la costituzione man mano che i lavori proseguono e sulla base dell’esperienza di esercizio delle porzioni di serbatoio costruito in precedenza, rendono assolutamente necessario che la costruzione sia effettuata per stralci successivi e tutti funzionali. In particolare sarebbe opportuno eseguire un primo lotto di opere con cui realizzare quanto prima un serbatoio di circa 100.000 mc di capacità utile che consentirebbe, prima di dar corso all’opera completa, di verificare alcuni risultati come ad esempio la reale entità delle immissioni d’acqua di falda, gli introiti effettivi provenienti dalla utilizzazione del materiale di risulta dello scavo e, soprattutto, i vantaggi derivanti al servizio idrico dalla presenza di una capacità di accumulo d’acqua potabile per ben 100.000 mc.
Ultimato il primo lotto ed acquisite tutte le necessarie informazioni dal suo esercizio protratto per un tempo sufficientemente lungo, si potrà procedere alla progettazione esecutiva ed alla realizzazione dei restanti stralci fino a raggiungere quella capacità complessiva di accumulo che l’esperienza diretta potrà consigliare.
Da rilevare come la costruzione immediata di un tronco di galleria, e quindi di un serbatoio da 100.000 mc, svolgerebbe un ruolo determinante nell’alimentazione idrica elbana anche nel caso la soluzione prescelta dagli addetti non fosse quella propugnata nel presente lavoro e come , pertanto, la costruzione del primo lotto indicato, sia essenziale per il futuro dell’Isola d’Elba. Ad esempio nel caso si decidesse l’installazione di impianti di desalinizzazione dell’acqua marina, la presenza di un serbatoio di ben 100.000 atto ad effettuare la compensazione settimanale dell’acqua prodotta, rappresenterebbe l’indispensabile completamento di tali impianti. Altro aspetto da non trascurare è quello inerente la spesa pari a ben 4.000.000 euro che annualmente viene sostenuta per trasportare all’Elba 50.000 mc di acqua potabile con navi cisterna. Ebbene se una volta soltanto venisse impiegata tale cifra per costruire la prima parte del serbatoio/galleria di cui sopra , e la cifra lo consentirebbe, si potrebbe disporre non di 50.000 mc ma del doppio cioè di 100.000 mc di acqua e non per un solo anno ma per tutti gli anni a venire.

P) PREVENTIVO SOMMARIO DI SPESA

La costruzione, in normali condizioni, di una galleria come quella in progetto completa di rivestimento in calcestruzzo armato e di opere accessorie può comportare una spesa di circa 8 miliardi di lire cioè 4.100.000 euro al chilometro. Essendo l’estesa totale prevista in 25 chilometri circa, l’importo complessivo delle opere può essere stimato in 103 milioni di euro. Si tratta di un impegno economico notevole che, a tutta prima, può apparire ingiustificato. Una analisi approfondita delle circostanze particolari dei luoghi può portare a conclusioni differenti. Innanzitutto occorre considerare l’importanza, anche economica, che riveste il problema di un corretto e sicuro rifornimento idropotabile dell’intera isola, rifornimento che nello stato di fatto và incontro a crisi sempre più gravi date dalle difficoltà crescenti che incontrano le fonti della Val di Cornia costituenti la base principale di alimentazione. In secondo luogo bisogna far rientrare nel bilancio economico gli introiti che possono derivare dalla utilizzazione del materiale di scavo della galleria quale ottimo materiale inerte da calcestruzzi, ghiaie e sabbie per riporti utili e per la eventuale ricostituzione della morfologia originaria della bellissima isola onde rimediare ai danni ambientali provocati dalla coltivazione delle cave di granito ed infine di sabbie per il ripascimento di spiagge erose da mareggiate oppure per l’ampliamento di quelle esistenti o la creazione di nuove piccole spiagge. Da tenere in particolare considerazione la produzione di blocchi di granito la cui estrazione, finora effettuata nelle cave all’aperto su concessioni che attualmente stanno per scadere e che sembra abbiano poche probabilità di rinnovo, potrebbe continuare, questa volta, senza arrecare alcun danno all’ambiente. Da rilevare come alla data attuale i locali cavatori siano costretti ad integrare l’insufficiente produzione di granito elbano con quello importato dalla lontana Cina. A questo riguardo si potrebbe ipotizzare anche la realizzazione di importanti porzioni di serbatoio a costo zero da attuarsi assegnando alle cooperative di cavatori degli spazi sotterranei in cui esercitare in piena libertà la loro attività fatto salvo soltanto il vincolo della quota altimetrica di estrazione del granito che è rigorosamente dettata dai vincoli idraulici del serbatoio. Non si può far a meno di concludere il capitolo inerente gli impegni di spesa senza far rilevare questo aspetto non secondario: i cavatori di quell’ottimo materiale che è il granito elbano invece di procurare immensi squarci alle montagne di S. Piero come fatto nel passato stanno costruendo grandi ed utili vasche sotterranee!

Q) IL SERVIZIO INTEGRATO PER LA GESTIONE DELLE ACQUE DELL’ATO (Ambito Territoriale Omogeneo)

Abbiamo visto come la costruzione del grande serbatoio/galleria e delle opere di captazione annesse, consenta di rendere il servizio idrico elbano autonomo ed autosufficiente riscattandolo dall’asservimento alla terraferma che tanti problemi sta creando. Questo però non significa che l’Isola sarà in futuro emarginata, essa invece potrà, come tutto il resto del territorio Italiano, entrare a far parte del servizio idrico integrato che riguarda l’intero ciclo delle acque di una più vasta zona (ATO= ambito territoriale ottimale) definita con criteri di razionalità sulla base della legge 36/94 (legge Galli) senza che, per tale motivo, la funzionalità delle opere medesime sia compromessa. Al contrario si potrà, anche in tale occasione, constatare come siano molteplici i benefici che il futuro sistema ATO potrà ritrarne. Innanzitutto poter disporre di una importante fonte d’acqua integrativa ubicata in prossimità di un notevole e decentrato centro di consumo estivo qual è l’Isola d’Elba, significa liberare il grande sistema idrico del gravoso impegno di rifornirla da una terraferma posta ad oltre dieci chilometri di distanza. In secondo luogo la presenza di un serbatoio di estremità come quello qui proposto, quando e se saranno potenziati i collegamenti idraulici con la terraferma, costituisce, con il suo notevole volume di invaso, un fattore di grande sicurezza del servizio idrico dell’intero sistema consentendo, in caso di bisogno, interscambi di portate nei due sensi sempre molto utili tenendo anche presente che in futuro le modalità di reperimento dei notevoli quantitativi d’acqua potabile che il grande sistema idrico richiederà potranno essere notevolmente diversi da quelli attuali. Ad esempio potrà darsi il caso che si debba allora ricorrere al trattamento di acque superficiali, al riutilizzo delle acque reflue opportunamente trattate, alla desalinizzazione dell’acqua salata ecc. ecc. Ebbene sarà in tutte queste evenienze che il serbatoio di estremità si rivelerà ancora una volta utilissimo per la regolarizzazione della produzione che, a fronte di una richiesta idrica variabilissima nel tempo, la sua grande capacità di invaso renderà possibile.

R) IL PRIMO LOTTO – LA RISOLUZIONE IMMEDIATA DELLE CRISI ESTIVE E LA REGOLAZIONE DELLA PRESSIONE DI RETE ALLO SCOPO DI RIDURRE DRASTICAMENTE LE PERDITE

Nel capitolo O) si è proposta la costruzione di un primo lotto di galleria-serbatoio specificandone l’utilità generale. In questo capitolo si ritiene opportuno aggiungere degli importanti dettagli e segnalare come tale opera potrebbe risolvere l’urgente grave problema delle crisi idriche estive utilizzando solo l’acqua potabile fornita dall’esistente acquedotto .
Un punto che riveste un’importanza capitale è quello delle grandi perdite occulte che accusano l’adduzione e la distribuzione idrica elbana facendo rilevare le caratteristiche delle perdite attuali ed in particolare di due loro elementi essenziali. Il primo consiste nella reale appartenenza delle maggiori perdite e cioè di quelle che determinano in maniera predominante l’elevatissimo tasso medio annuo di perdita (70% del totale prodotto) ai periodi di scarso consumo dell’utenza e cioè alla gran parte delle giornate annue. In altre parole se si potesse conoscere il volume disperso nel periodo estivo di grandi consumi ci si accorgerebbe che esso rappresenta una piccolissima frazione di quell’enormità di acqua dispersa annualmente nel terreno.
Un secondo importante dettaglio è quello della pressione di esercizio di molte condotte, pressione che all’Elba raggiunge, soprattutto nei citati e lunghi periodi di basso consumo dell’utenza, valori cosi elevati da rendere praticamente impossibile il contenimento delle perdite entro valori accettabili. Si può sostenere che, anche se si potessero ricostruire tutte le condotte colabrodo, l’Elba accuserebbe comunque perdite esagerate. Il motivo è molteplice. Tante perdite hanno luogo negli allacciamenti privati che sono difficilmente ricostruibili a causa della loro ubicazione all’interno delle abitazioni o dei terreni privati e poi perché i relativi oneri gravano sui privati che sono restii a sostenerli. In secondo luogo bisogna tenere ben presenti le normali modalità della eventuale ricostruzione delle condotte stradali che, stante l’impossibilità di interessare con unico intervento l’intera rete ammalorata, hanno luogo per gradi iniziando dal punto di partenza della rete per estendersi mano a mano verso valle fino a coprire attraverso gli anni l’intero territorio. Ebbene questa progressione di miglioramento della rete provoca via via una pressione più elevata nell’area ancora ammalorata posta più a valle e che in questo modo viene assoggettata ad una notevole intensificazione delle relative perdite. In altri termini quando si sostituisce un tronco di condotta se ne eliminano effettivamente le perdite ma aumentano quelle della rete alimentata dalla condotta appena rifatta. Il beneficio vero lo si raggiunge solo a rete completamente ricostruita ivi compresi gli allacciamenti privati. Inutile dire che ciò si concretizza soltanto dopo un lungo periodo di tempo e che nel frattempo la troppo elevata pressione avrebbe già provocato numerose rotture nella parte di rete appena ricostruita. In conclusione risultati sicuramente positivi ma assolutamente non corrispondenti alle aspettative.
Il ragionamento appena fatto ha portato al diffondersi ovunque di una importante conclusione: è urgente e necessario attuare una buona regolazione della pressione di esercizio degli acquedotti se si vuole ottenere una immediata e sostanziale riduzione delle perdite anche in una rete colabrodo come quella elbana. A questo punto occorre però esaminare bene le caratteristiche del territorio dell’Isola e rendersi conto delle enormi difficoltà che presenterebbe un intervento di questo genere e degli elevati costi che ne deriverebbero. Si rendono pertanto necessarie valutazioni tecnico-economiche molto complesse che vanno al di là delle considerazioni fatte in questa sede. L’argomento perdite si conclude in questo modo: l’Elba perde durante un intero anno una percentuale elevatissima di acqua ma in valore assoluto si tratta di un volume tutto sommato modesto. Per studiare e soprattutto per realizzare e gestire uno dei rimedi basilari, e cioè la regolazione della pressione, occorrerebbe un impegno economico notevole e probabilmente sproporzionato anche nei riguardi del risultato finale. Le opere che si possono ragionevolmente prevedere si basano invece sulla ricostruzione delle condotte più obsolete e malmesse, sulla riparazione sollecita delle rotture maggiori man mano che si formano e soprattutto nel migliorare l’approvvigionamento d’acqua in modo da poter disporre di portate atte coprire anche le perdite piuttosto elevate che è necessario tollerare. Si vedrà più avanti come un buon risultato sia comunque possibile fin dalle opere del primo lotto in argomento.

Le considerazioni su riportate conducono ad una importante conclusione: è fondamentale per l’Elba riuscire a reperirvi la maggior portata d’acqua possibile ed a basso cocosto come quella che forma l’oggetto della proposta galleria-serbatoio.
Si è già visto che la caratteristica fondamentale dei consumi idrici elbani è quella di provocare crisi limitate ad un periodo massimo pari a solo una quarantina di giornate estive mentre per il restante lungo periodo la attuale disponibilità d’acqua potabile supera il fabbisogno. E’ questo un argomento fondamentale da tenere sempre in mente e che è opportuno ribadire: per 320 giorni all’anno l’Elba dispone di molta acqua potabile! La conclusione cui si perviene è ovvia. L’acqua che prima di tutte le altre acque deve essere conservata per far fronte ai 40 giorni di crisi, deve per forza essere questa e non quella di qualsiasi altro tipo. Sarebbe di una assurdità intollerabile se per 320 giorni l’anno si lasciasse perdere acqua potabile come quella indicata e ci si preoccupasse invece di raccogliere quella piovana. E’ questo un ulteriore prova della validità del serbatoio-galleria che è appunti destinato a contenere acqua potabile.

Ed ora, si descrive un possibile esercizio di un primo breve tronco di una prima parte del serbatoio-galleria (vedi fig. 10 allegata).

Nella sua prima fase risulta sufficiente una capacità complessiva di invaso pari a soli 100000 mc di acqua potabile la quale,

ig. 10 = veduta prospettica dellle opere del primo lotto esecutivo

secondo quanto prima indicato, sarebbe direttamente prelevabile dalla rete acquedottistica durante i periodi autunno-invernali. In tal modo e senza bisogno di filtri, di depuratori e di altre complesse apparecchiature ma eventualmente con un solo sistema di disinfezione atto a garantire nel tempo la salubrità dell’acqua, si potrebbe coprire ampiamente i maggiori consumi dei famosi 40 giorni estivi e quindi ovviare alle attuali gravi crisi. Interessante notare le modalità di esercizio. In dettaglio durante tutto l’anno la valvola automatica di collegamento della rete acquedottistica con la vasca di prelievo e quindi con il serbatoio-galleria si aprirà solo quando la pressione di rete supera un determinato valore ottenendo il duplice vantaggio di accumulare tutto e solo il surplus di portata ed inoltre di contribuire efficacemente ad abbassare la pressione di rete tutte le volte che questa tende ad assumere valori troppo elevati. Ciò significherebbe aver realizzato in buona parte quella regolazione automatica della pressione di rete di cui si è parlato all’inizio del presente articolo  e che determina una diminuzione razionale delle perdite occulte di rete. In sostanza un duplice vantaggio: regolarizzare sia la portata che la pressione di esercizio dell’intero acquedotto elbano con immediata riduzione delle perdite occulte di rete ed al tempo stesso raccogliere ed accumulare tutta l’acqua, assolutamente potabile, necessaria e sufficiente per aver ragione dei disservizi che oggi affliggono il servizio idrico d’Elba
Dopo qualche anno, quando le disponibilità economiche lo renderanno possibile, si potrà procedere sulla via del completamento graduale dell’opera come da progetto generale costruendo un secondo tronco di galleria-serbatoio posto in continuazione con il primo e quindi pronto immediatamente a lavorare in parallelo con esso. Il maggior quantitativo d’acqua da immettervi richiederà che si ricorra allora anche alle acque piovane. Si potrà ad esempio scegliere uno dei fossi che per lunghi periodi dell’anno sono percorsi da grandi volumi di ottima acqua piovana la quale, per assumere le caratteristiche di potabilità necessarie per poterla immettere in serbatoio, dovrà essere assoggettata soltanto a trattamento di filtrazione e di disinfezione.
Si ritiene che le indicazioni riportate diano una chiara idea della funzionalità e dell’economia di esercizio delle opere descritte basate sulla costruzione dei primi due tronchi di serbatoio-galleria ricavato nella roccia del M. Capanne.

In basso si nota la vasca destinata a prelevare dalla rete acquedottistica il surplus di portata rispetto al fabbisogno e dotata di impianto di pompaggio per immettere l’acqua nel soprastante serbatoio-galleria tramite apposita condotta di adduzione. La vasca viene alimentata tramite valvola di regolazione asservita alla pressione della rete

S) IL TRATTAMENTO PER LA CORREZIONE DELL’ACQUA CAPTATA NELLA VAL DI CORNIA

E’ diffusa in questi giorni (settembre 2011) notizia del “piano anti boro” per l’acqua che scorre dai rubinetti di alcuni comuni della Val di Cornia e dell’isola d’Elba, da sempre alle prese con il problema del’arsenico e boro. Il piano vale 20 milioni di euro e comprende la costruzione e l’esercizio di complesse e costose apparecchiature di trattamento dell’acqua captata nella Val di Cornia e distribuita in tutto il territorio, Isola d’Elba compresa. Nulla è detto riguardo ai maggiori costi di produzione dell’acqua potabile che ne deriveranno nè se ad essi si dovrà far fronte con aumenti tariffari posti a carico dei cittadini.

L’Isola d’Elba da parte sua provoca, suo malgrado e senza colpa alcuna essendo dovuti esclusivamente alla sua particolare condizione di insularità, costi aggiuntivi a quelli citati di trattamento anti boro ed anti arsenico, costi aggiuntivi che si riferiscono al notevole onere di trasporto dell’acqua dalla Val di Cornia ed alle perdite occulte che raddoppiano l’mporto finale di produzione e trasporto di ogni litro d’acqua che giunge all’utente..

Anche l’acqua di ottima qualità presente in Isola in gran quantità durante il periodo autunno-invernale, poiché i programmi dell’Enta gestore prevedono il suo immagazzinamento in una ventina laghetti all’aria aperta e sparpagliati in lungo e largo per l’Isola, finirà per dover subire un trattamento di potabilizzazione assai costoso. e tra l’altro frammentato in piccole porzioni sparse anch’esse in varie parti dell’Isola.

Quanto sopra rende con una sempre maggior evidenza che, per quanto riguarda l’Elba, la strada da percorrere non poteva che essere quella basata sulla costituzione di un grande invaso come quello oggetto del presente lavoro e che sarebbe atto a ricevere e conservare intatta non acqua grezza ma quell’acqua potabile, buonissima e di minimo costo che vi si trova fuori stagione grazie alle abbondanti piogge che si hanno tutti gli anni. Ancora una volta è di mostrata, senza che ce ne fosse bisogno, l’utilità del serbatoio/galleria di grande volume che, oltre ai vantaggi già indicati, avrebbe sicuramente ed in maniera determinante contribuito ad abbassare il costo medio di produzione dell’acqua.

T) CONCLUSIONI

La grande ricchezza del sottosuolo elbano, nota fin dalla preistoria ma da tempo poco sfruttata, viene qui riscoperta per dotare l’Isola di un’opera in grado di risolvere in maniera definitiva uno dei problemi che oggi l’assillano: il rifornimento idropotabile. Si tratta di ricavare nel materasso granitico della parte ovest dell’Isola dove più frequenti sono le piogge, una galleria-serbatoio che circondando il Monte Capanne sia atto a raccogliere ed accumulare la quasi totalità dell’acqua che, concentrata in brevi periodi, vi precipita durante il corso dell’anno, allo scopo di distribuirla all’utenza al momento della sua effettiva e variabilissima richiesta. Un beneficio secondario ma tutt’altro che trascurabile, è quello della laminazione delle piene ad opera della citata raccolta d’acqua piovana dei fossi e che contribuirà a lenire i danni provocati agli abitati posti a valle dalle precipitazione eccezionalmente abbondanti.
Nella trattazione si sono formulate due ipotesi la prima che prevede la costruzione di un serbatoio interamente adibito all’accumulo di acqua potabile per un volume di 2.000.000, la seconda con la suddivisione della capacità totale di invaso in due parti uguali: una per l’acqua pura pronta per essere distribuita all’utenza e l’altra per acqua grezza da raccogliere dai fossi nello stato in cui vi si trova durante i periodi piovosi.
Questa seconda ipotesi si articola in due diversi modi e cioè con o senza possibilità di distribuire, oltre a quella potabile anche acqua grezza per usi vari. Sussiste infine una attività assolutamente innovativa che riveste un ruolo importante per l’economia e l’autosufficienza energetica dell’Isola: la produzione di energia elettrica. La scelta della soluzione definitiva da adottare potrà farsi, come tutte le altre decisioni di dettaglio, soltanto in fase di progettazione esecutiva e dopo aver eseguito tutti i necessari accertamenti.
La quota altimetrica di imposta dell’opera presenta molteplici vantaggi che vanno dalla notevole ampiezza del bacino sotteso, alla possibilità di alimentare in fase definitiva per caduta la quasi totalità dell’utenza evitando quindi l’uso di pompe per il sollevamento dell’acqua ed in prima fase utilizzando in toto la rete di adduzione oggi esistente. Un ulteriore suo vantaggio é dato dalla possibilità di sfruttare una quota così elevata per l’eventuale produzione di energia elettrica.
L’opera proposta è del tutto singolare ma, a giudizio di chi scrive è atta a raggiungere lo scopo senza alterare le caratteristiche ambientali dell’isola ma, al contrario, contribuendo indirettamente a fornire incremento e continuità ad alcune attività locali, al turismo e all’industria edilizia grazie all’ottimo materiale lapideo di risulta dagli scavi. Essa potrà, inoltre, entrare intimamente a far parte del futuro sistema del servizio idrico integrato previsto dalla legge Galli per il competente ambito territoriale ottimale.

lL progetto del maxi serbatoio per l^sola d’Elba è stato pubblicato, in italiano ed inglese, sul n 75 aprile 2005 della rivista “GALLERIE E GRANDI OPERE SOTTERRANEE”nella esatta veste riportata sopra

BIBLIOGRAFIA

Bencini A., Giardi M., Pranzini G.,Tacconi B.M., 1985, Le risorse idriche dell’Isola d’Elba, Tacchi Editore, Pisa
Megale P.G., Uso degli acquiferi locali per la regolazione delle risorse idriche dell’Isola d’Elba, Laboratorio Nazionale dell’Irrigazione ” P.Celeste” – Università degli Studi di Pisa
Consorzio Intercomunale per la Gestione delle Risorse Idriche, Il Piano di risanamento
Braccesi G., La vulnerabilità delle falde Elbane
Marinello G., Carta geologica dell’Isola d’Elba alla scala 1:25000

Ultimo aggiornamento: settembre 2011

AVANTI

FABBISOGNO, CONSUMI, PORTATE E PERDITE NELLA PRATICA DI ESERCIZIO DELLE RETI DI DISTRIBUZIONE D’ACQUA POTABILE A SOLLEVAMENTO MECCANICO

 

1) INTRODUZIONE


Elemento determinante per la conoscenza della rete acquedottistica è il quantitativo d’acqua che, nei molteplici aspetti che vanno dai volumi totali immessi, a quelli dispersi nel terreno a causa delle perdite occulte, alle portate delle singole condotte, a quelle erogate da ogni nodo, ai volumi invasati o svasati dai serbatoi, a quelli richiesti dall’utenza nei vari periodi della giornata e dell’anno, caratterizza, nella realtà, il funzionamento della rete d’acquedotto in genere e di quella a sollevamento meccanico in particolare.
Scopo del presente lavoro è l’esame di alcuni di tali aspetti.

 

2) FABBISOGNO IDROPOTABILE E CONSUMO DELL’UTENZA


La determinazione del fabbisogno idropotabile è stata oggetto di estese e sperimentate ricerche concernenti vari fattori come tipo di utenza, importanza e qualità dell’abitato da servire, il suo grado di benessere, la politica tariffaria adottata dall’ente gestore ecc. che incidono sui consumi e sulla loro distribuzione temporale durante la giornata e durante l’anno tipo.
Dalla numerosa letteratura tecnica esistente in proposito, cui si rimanda per approfondire molto più autorevolmente il problema, si possono ricavare tutti i dati necessari per determinare caso per caso i consumi prevedibili e quindi le portate medie giornaliere e quelle orarie da prendere come base nello studio degli impianti acquedottistici.
Si vuole qui far rilevare un particolare aspetto del problema.
Dall’esame dei dati di funzionamento reali  di acquedotti in normale esercizio e con fabbisogno dell’utenza soddisfatto, si rileva che tra pressione di esercizio e consumo intercorre una mutua relazione riguardante, oltre alle perdite di rete che in tal senso denotano una marcata sensibilità, anche altri fattori poco riconoscibili ma tra i quali possono ragionevolmente annoverarsi:
· le portate utilizzate per usi domestici come docce, lavabi, ecc.
· le portate prelevate da elettrodomestici o da apparecchi vari con bocca di prelievo a sezione fissa;
· le portate utilizzate da privati per impianti di raffreddamento:
· le portate destinate all’irrigazione di orti o giardini e quelle utilizzate per lavaggio macchine.
· le portate prelevate da idranti per lavaggio strade, fontanelle pubbliche, vasche di cacciata per lavaggio fognature stradali o altri usi simili,
· le portate utilizzate per lavaggio condotte e quelle di sfioro dei serbatoi:
La portata istantanea richiesta per gli usi indicati subisce, per effetto della variazione della pressione di pompaggio delle centrali dell’acquedotto e quindi della pressione di tutta la rete, delle modifiche rilevanti che si riflettono sul consumo finale dell’utenza.
Nella fig. n. 1 è riportato, a titolo di esempio, il grafico della portata realmente immessa in una rete d’acquedotto priva di serbatoi di accumulo distribuiti in rete. E’ indicata (con un piccolo sfasamento temporale dovuto a necessità meccaniche dei pennini) anche la pressione di pompaggio. Il funzionamento si svolge secondo due diverse modalità: per le piccole portate, a pressione di partenza fissa (m. 24 su asse tubo) data dal serbatoio pensile posto in testa alla rete, e, per richieste dell’utenza superiori ad una determinata soglia, con pompaggio diretto in rete ed a pressione variabile. Si possono trarre interessanti deduzioni.
Innanzitutto si nota come durante la notte dalle ore 1 alle ore 5 circa, quando il funzionamento ha sempre luogo a bassa e fissa pressione (24 m sulla condotta), la portata minima si stabilizza su un valore costante che si ripete anche in tutte le notti di tutto l’anno, sia che si tratti di periodi di grandi e sia di piccolissimi consumi dell’utenza, per variare solo quando si verificano in rete nuove rotture o prelievi straordinari. Ciò sta ad indicare che la portata in questione è data per la totalità dalle perdite.
Alle ore 7.30 circa il prelievo dell’utenza supera la soglia critica (preventivamente fissata sui 92 l/s circa in uscita dalla centrale) per cui ha inizio il pompaggio in diretta ad alta pressione. La maggiore prevalenza di pompaggio (da m.24 a 36 m. circa) provoca un immediato aumento di portata che passa da 92 l/s circa a 130 l/s circa. Da tale momento in poi la pressione, al variare delle richieste dell’utenza, segue la curva caratteristica della pompa in servizio a seconda dei gruppi di sollevamento messi in funzione dall’automatismo. Risulta impossibile conoscere, anche in considerazione del fatto che non è dato sapere se ciò comporta una insufficiente alimentazione di una parte più o meno grande del territorio servito, quale sarebbe stato il funzionamento qualora il pompaggio fosse rimasto a bassa pressione per tutta la giornata. Si è comunque tracciata a vista, al fine di evidenziarne l’andamento di massima, la curva delle portate che presumibilmente la rete avrebbe richiesto in tale ipotesi ed indicato con colore nero pieno il maggior volume consumato dalle ore 7 alle 12 circa a causa dell’aumento di pressione. La maggiorazione, quantificabile in mc 230 circa, contro un volume di mc 1517 d’acqua che si sarebbe consumata a regime normale, fa ascendere a ben il 15% la percentuale di aumento nel periodo considerato.

 

Fig. 1 = Portata e pressione in uscita da una centrale di pompaggio a pressione variabile

Alle ore 12 circa, con utenza senz’altro alimentata correttamente, viene superata in decremento la soglia critica e l’automatismo impone di passare dal pompaggio ad alta a quello a bassa pressione. Il conseguente calo di pressione (da m. 38 circa a m 24) provoca una diminuzione di portata che dai 99 l/s passa a 76 l/s. Supponendo che la stessa variazione di pressione si verifichi anche in rete (cosa in buona parte vera se si considera la modesta variazione di portata che si verifica nei due casi) ed applicando le regole della foronomia (vedi anche cap. 3):

portata a bassa press.= port. ad alta x sqrt(delta press.)
si ottiene
portata = 99 . sqrt (24/38) = 78

La portata determinata teoricamente sulla base della nuova pressione (78 l/s) si avvicina a quella reale letta sul grafico di pompaggio (76 l/s) confermando, come precedentemente affermato, che la variazione nella pressione di esercizio della rete provoca una variazione di portata assorbita dalla rete che, è totalmente indipendente dalle richieste dell’utenza. Da notare come in regime normale, e cioè senza alcuna manovra delle pompe, ad una diminuzione di portata così rilevante che fosse invece dovuta, ad esempio, ad una grossa utenza che ha chiuso la sua saracinesca di prelievo, corrisponderebbe, con un effetto diametralmente opposto a quello in esame, un notevole aumento di pressione dato dal diverso punto di utilizzazione della curva caratteristica della pompa.
Qualora alle ore 12 non si fosse verificata la manovra descritta e l’impianto avesse invece continuato a funzionare ad alta pressione per il resto della giornata, notte compresa, ben diverso sarebbe stato il volume d’acqua totale assorbito dalla rete nelle 24 ore.
Quanto precede deve chiarire un concetto importantissimo per la corretta gestione degli impianti acquedottistici: poiché il fabbisogno dell’utenza può essere modificato ad arte, il gestore non deve sempre sottostare alle richieste ma deve imporre, ovviamente entro determinati limiti, le condizioni di funzionamento (pressione in questo caso) della rete che più soddisfano l’economia, la disponibilità di risorse, la regolarità di esercizio ecc. ovviando, in determinati casi, anche a deficienze della rete. Cio’ deve aver luogo senza pregiudicare il rifornimento idropotabile e cioè contenendo in ogni caso la pressione entro i limiti massimi e minimi consentiti per una corretta consegna dell’acqua.
Immaginiamo di osservare il funzionamento di un acquedotto senza serbatoi in rete e provvisto di centrali che immettono la loro portata in condotta con possibilità di modificare sia la portata che la pressione di esercizio. Se una zona, ad esempio, è servita da condotte di diametro insufficiente, è possibile, per ovviare alle carenze che ne conseguono, aumentare la pressione di esercizio giornaliero portandola verso il valore massimo ammissibile, mentre se un’altra zona ha delle fonti deficitarie, è opportuno mantenere costantemente sui valori minimi la pressione per economizzare nella portata immessa in rete. Se in altre zone c’è sovrabbondanza di produzione si potrà spingere l’utenza al consumo aumentando la pressione di rete. In ogni caso durante la notte sarà opportuno riportarla ai valori minimi in quanto, in caso contrario, i bassi consumi notturni provocherebbero modeste perdite di carico e conseguenti inutili elevate pressioni in condotta. La diminuzione notturna, oltre a rappresentare una economia diretta della spesa di sollevamento data dalla minore prevalenza delle pompe, riduce notevolmente le perdite di rete con ulteriori minori oneri di produzione dell’acqua come sarà più avanti dimostrato.
Gli effetti indotti in rete dalla pressione non sono determinabili teoricamente in quanto dipendono da fattori variabili rete per rete e del tutto incogniti come la presenza e l’ubicazione delle perdite occulte, la scabrezza effettiva delle condotte distinta condotta per condotta, la presenza di prelievi particolari come quelli descritti particolarmente sensibili alla variazione della pressione di consegna dell’acqua, le modificazioni provocate nella durata dei vari prelievi ecc. ecc. Le cose si complicano ulteriormente quando nella rete sono presenti i serbatoi. Allora alle considerazioni esposte devono aggiungersi quelle relative alle modalità ed ai tempi di invaso e di svaso cui conseguono ulteriori e predominanti necessità di regolazione della pressione e relative variazioni nel fabbisogno effettivo sia istantaneo che giornaliero dell’utenza.
La descritta interdipendenza tra portata assorbita e pressione di esercizio estende i suoi effetti in senso spaziale poiché in uno stesso acquedotto le zone d’utenza alimentate a pressione più elevata avranno consumi specifici superiori di quelle a pressione deficitaria o comunque inferiore. Ne consegue che la determinazione dei consumi reali di una rete, cui si è fatto cenno all’inizio del capitolo, può essere effettuata soltanto partendo dai dati che tengano conto della effettiva situazione dell’utenza, ivi compresa anche la pressione di consegna dell’acqua. A tal fine le modalità che saranno indicate più avanti, essendo basate sulla lettura dei contatori privati periodicamente effettuate per la fatturazione dell’acqua, sono senz’altro le più adatte.
Per completare la disamina degli effetti secondari provocati in rete dalla variazione di pressione si cita un elemento, ben noto ai progettisti degli impianti di sollevamento e che, in caso di pompaggio asservito in automatico alla portata in uscita, incide sulla regolazione. Possono presentarsi due casi:


a) – la portata si mantiene casualmente e per un lungo periodo su valori prossimi alle soglie di intervento degli automatismi (ad esempio messa in moto o arresto di pompe). In linea teorica ha luogo, per tutta la durata del periodo stesso, un dannoso pendolarismo nel funzionamento cioè un continuo alternarsi di ordini e contrordini con effetti negativi sia per gli impianti che per il rifornimento idrico. In realtà tale pericolo non sussiste in quanto ad ogni superamento della soglia ed al conseguente avvio od arresto automatico della pompa, corrisponde, per quanto spiegato sopra, una sensibile variazione indotta nella portata il che elimina ogni incertezza nell’interpretazione del segnale. Soltanto una decisa variazione nelle richieste effettive dell’utenza può provocare un nuovo intervento dell’automatismo: è pertanto assicurata una grande stabilità di funzionamento del sistema automatico di comando e controllo.


b) – durante i periodi di grande modificazioni nelle richieste dell’utenza e conseguente manovra delle pompe (specialmente se si tratta di macchine a velocità variabile che sono in grado di seguirne l’andamento) ha luogo anche una variazione di portata dovuta all’effetto indotto descritto sopra, variazione che finisce per alterare il segnale di base cui è asservita la pompa (portata in uscita) con risultati imprevedibili nella regolazione. Ad esempio in caso di aumento di portata dovuto ad una maggior richiesta di un grosso utente, la stazione di pompaggio, per farne fronte, aumenta sia la portata che la pressione. L’aumento di quest’ultima provoca una ulteriore maggiorazione di portata in uscita con conseguente richiesta di nuovo aumento di pompaggio. Il ciclo potrebbe ripetersi all’infinito con conseguenze disastrose, fatta salva la opportunità di porvi rimedio tramite adatti software del sistema di comando e controllo in base ai quali ogni ad ogni manovra fa seguito un controllo ed una conferma oppure un annullamento della manovra stessa.

 

 

3) LE PERDITE DI RETE

La perdita di rete consiste nel volume d’acqua dissipato nel terreno o comunque non utilizzato dall’utenza a causa di piccole rotture nelle condotte o negli allacciamenti privati. Tale volume comprende di solito anche quello dovuto alle mancate registrazioni dei contatori e ai consumi particolari come lavaggi delle condotte, prove a pressione, annaffiamento giardini e lavaggio strade ecc. raramente sottoposto a misurazione.
In un acquedotto in ottime condizioni la percentuale, così intesa, può variare da un minimo del 10-15% ad un massimo del 30-35% della portata totale immessa in rete, per raggiungere valori molto superiori in caso di acquedotti vetusti.
In questa sede per perdite di rete si intendono le perdite vere e proprie. I volumi d’acqua utilizzati per consumi particolari di cui sopra, in una razionale gestione, devono essere quantificati anch’essi. A tale scopo è necessario che anche le bocche di annaffiamento dei giardini o delle strade, le vasche di cacciata delle fognature ecc. siano munite di contatori e che anche tali consumi entrino nel bilancio idrico generale. Parimenti in caso di lavaggio delle condotte si deve provvedere alla quantificazione dei volumi d’acqua adoperati inserendo dei contatori provvisori nei punti di prelievo dell’acqua dalla rete o, come minimo, stimando dai grafici di portata totale immessa in rete l’aumento di consumo conseguente al lavaggio. Per quanto riguarda le mancate registrazioni si deve aggiungere che sono in parte dovute alla imprecisione ed inerzia proprie dei misuratori cui non è possibile porre rimedio ed in parte al loro funzionamento anomalo generalmente causato da vetustà e che può essere evitato provvedendo alla sostituzione sistematica ad intervallo non superiori a 8-10 anni.
Se vengono applicate tali regole, la differenza fra i volumi d’acqua immessa in rete e la somma dei consumi letti ai contatori privati rappresenta la reale perdita di rete. Trattasi di quantitativi che incidono fortemente sulla economia di esercizio e sulla possibilità di soddisfacimento del fabbisogno dell’utenza e che pertanto, in una corretta gestione, devono essere tenuti sotto attento controllo. Gli elementi di conoscenza di cui si può disporre in ogni realtà acquedottistica sono però molto limitati. Consistono esclusivamente nel volume totale d’acqua di perdita determinabile, come già detto, per differenza tra volumi immessi in rete e volumi fatturati e nella portata istantanea di perdita notturna rilevabile dai grafici dei misuratori dell’acqua immessa in rete. Si può infatti ragionevolmente ritenere che la portata minima notturna registrata da detti misuratori, depurata dagli eventuali prelievi di entità ben nota ed effettuati per alimentare i serbatoi o per forniture notturne particolari, sia, come precedentemente indicato, totalmente dovuta alle perdite di rete.
L’integrazione di quest’ultima portata, considerata giornalmente di valore costante per tutto il periodo intercorrente tra una lettura dei contatori dell’utenza e la seguente, dovrebbe dare, in doppio modo e quindi per conferma di quello già determinato con le modalità descritte, il volume totale d’acqua disperso. Tale equivalenza si verifica raramente in quanto, nella stragrande maggioranza dei casi, la portata dovuta alle perdite, lungi dal mantenersi costante per tutte le 24 ore della giornata, varia in continuazione al variare della pressione che si stabilizza nelle condotte dove sono ubicate le perdite stesse secondo le regole già spiegate.


Per una completa disamina di tale fenomeno si assume come esempio una rete ipotetica avente caratteristiche invero poco adatte per una reale alimentazione idropotabile ma atta ad evidenziare compiutamente il fenomeno che si vuole studiare. Si suppongono noti, come di norma, i grafici giornalieri della portata d’acqua immessa in rete e la pressione di pompaggio dell’impianto di produzione posto in testa alla rete. Essendo nota anche la portata di perdita che si verifica nei periodi notturni di minor consumo secondo quanto sopra indicato, è possibile determinarne i valori anche nei rimanenti periodi sulla base della variazione che subisce , periodo per periodo, la pressione di consegna all’utenza. Infatti, essendo le perdite dovute a rotture, fessurazioni o comunque aperture di qualsiasi tipo esistenti nelle condotte, si possono usare le formule idrauliche della foronomia ed in particolare la seguente:


Qx = Qi . sqrt(Px/Pi)
Dove: Qx = portata da determinare all’istante x
Px = pressione nota all’istante x
Qi = portata nota all’istante i
Pi = pressione nota all’istante i
sqrt = radice quadrata

(N.B.: nuove ricerche hanno dimostrato che la formula valida prevede la radice con esponente 1,18 anziché 2. Ciò comporta un vantaggio ancora maggiore di quello descritto nella presente memoria)

Come risulta dallo schema idraulico della fig. 2 la rete da esaminare concerne un centro abitato servito da un insieme di condotte magliate alimentate da un solo impianto di produzione e sollevamento (S1) munito di vasca di carico posta in testa alla rete. La pressione di partenza è pertanto costante mentre quella di consegna, essendo funzione della portata consumata, varia in continuazione facendo di conseguenza variare anche la portata della fughe d’acqua secondo la legge idraulica descritta.
Nei grafici giornalieri di cui alle fig. n. 3 e 4, relative al funzionamento a pressione di partenza costante, sono illustrate rispettivamente per il giorno di consumo massimo e per quello corrispondente alla media annua, l’andamento della pressione di arrivo ai nodi (pressione media ponderale di tutti i nodi calcolata con apposito programma di verifica della rete magliata ) nonchè la curva delle perdite che si verificano nei due casi calcolata con la formuletta sopra riportata.
Pur trattandosi, come già detto, di un esempio di rete nella quale si sono volutamente esasperati i dati di funzionamento idraulico, si possono trarre delle considerazioni molto interessanti.
Si nota innanzitutto come i periodi di maggiore perdita siano sempre quelli di minor consumo (ore notturne e giornate di basso consumo). Il volume totale giornaliero disperso nel terreno passa da mc 23587 relativo al giorno di consumo max a mc 28343 per quello di consumo medio annuo. Se si considerano le percentuali di perdita rispetto ai volumi totali giornalieri immessi in rete (rispettivamente mc 77760 e mc 51840) si va dal 30% nel giorno di consumo max a 55% in quello medio. Ciò starebbe ad indicare che mediamente solo il 45% della portata immessa in rete raggiunge l’utenza mentre si verificano percentuali ancora inferiori nei giorni di consumo minimo.

 

 

Come si vede i valori di percentuali di perdita calcolati, a causa delle condizioni di funzionamento e particolarmente delle esagerate perdite di carico che presenta la rete scelta ad esempio, sono troppo elevati per trovare corrispondenza nella reale gestione di una rete acquedottistica, si raggiunge però lo scopo di evidenziarne la variazione durante l’anno tipo.

Si vuole ora indicare quali sarebbero le modalità atte a far rientrare nella normalità anche una rete irrazionale come quella dell’esempio,
La soluzione è rappresentata dalla radicale modifica del sollevamento in testa alla rete. Non più vasca di carico e quindi pressione di partenza fissa ma pompaggio diretto in rete a pressione variabile asservita alla pressione rilevata ai punti di consegna.
Come risulta dalle fig. n. 5 e 6 si tratterebbe di prefissare una pressione media alla consegna più bassa (solo 15 m) durante la notte quando sono modeste le richieste dell’utenza e m. 25 durante le ore giornaliere. Sono indicate con linea tratteggiata la pressione di pompaggio necessaria per raggiungere il risultato citato sopra e, in linea continua, la curva delle perdite calcolata in funzione della nuova pressione di consegna ed applicando la formula indicata. Il volume totale disperso giornalmente nel terreno risulterebbe di mc 16852 sia nei giorni di massimo che di minimo consumo con una percentuale pari al 21% nel giorno di consumo max, al 32% in quello medio rientrando quindi entro valori normali. Si potrà inoltre notare come, contrariamente a quanto verificato nella precedente soluzione, le minori perdite abbiano luogo durante il periodo notturno.
Per ulteriore documentazione si descrivono gli effetti realmente indotti nella rete di cui alla fig. n.1 e nella quale si è deliberatamente forzata la pressione di esercizio durante un’intera notte al fine di valutarne le conseguenze nei riguardi delle perdite.

I dati effettivamente rilevati e riportati nei grafici di cui alla figura n. 7, denunciano risultati ancora peggiori di quanto descritto. Si può infatti constatare come la maggiorazione della pressione di esercizio da m. 25 (pressione notturna normale) a m 53 (pressione artatamente mantenuta durante tutta una notte) abbia provocato un aumento del tutto anomalo nella portata notturna consumata che è passata da 23 l/s a 47 l/s ( al raddoppio di pressione corrisponde il raddoppio delle perdite!). Il fenomeno viene spiegato dalla formazione, non casuale, di nuove perdite. Infatti applicando la regola enunciata si evince che la portata nella notte in argomento avrebbe dovuto essere pari a soli 33.5 l/s contro i 47 l/s effettivamente misurati. Si riscontrano pertanto 13.5 l/s di consumo aggiuntivo evidentemente dovuto a nuove rotture nelle tubazioni stradali provocate dalla anomala pressione. Il fenomeno ha trovato conferma nella notte successiva nella quale, pur avendo ripristinato la pressione normale, la portata minima, invece di assumere il suo normale valore di 23 l/s, è rimasta pari a 30 l/s. Il calcolo teorico della portata a seguito della diminuita pressione (da m.53 a m.25) fornisce come risultato 32.5 l/s vicino a quello effettivo.

 

 

 

 

 

 

 

Una ulteriore conferma la si è avuta nelle settimane successive quando le nuove rotture sono state rintracciate e riparate e la portata minima notturna è rientrata al suo valore normale di 23 l/s circa.

Si riportano i dati riassuntivi di funzionamento:

 Data  Pressione notturna  Portata media giornalieral/s – Coeff.  Volume totale giornal.mc  Portata minima notturnal/s – Coeff.  Portata minima calcolatal/s
 26.11.96  25 (normale)  65.7 – 1.00  5676  23 – 0.35  base
 27.11.96  53 (alta)  82.5 – 1.26  7128  47 – 0.72   33.5
 28.11.96  25 (normale)  70.9 – 1.08  6126  30 – 0.46  32.5


Evidenziate come sopra alcune delle caratteristiche che la rete di distribuzione presenta nei riguardi delle perdite si elencano gli accorgimento che, in ogni caso, si devono adottare nella pratica di esercizio.
Innanzitutto deve essere posta la massima attenzione alla pressione di consegna dell’acqua che deve essere, in ogni condizione di funzionamento, quella minima atta ad un ottimale soddisfacimento dell’utenza senza inutili carichi residui, soprattutto notturni, fonte, oltre che di eccessivi dispendio energetico per il pompaggio, anche di esagerate dispersione d’acqua come sopra dimostrato.
In secondo luogo è necessario eseguire per ogni periodo di lettura dei contatori di utenza il calcolo delle percentuali di perdita in modo da avere una prima quantificazione e poterne seguire l’evoluzione nel tempo.
Durante tutto il corso dell’esercizio bisogna inoltre attuare una campagna di ricerca ed eliminazione delle fughe d’acqua eseguendo le necessarie riparazioni e, in casi estremi, la sostituzione di interi tratti di condotta e delle apparecchiature in essa inserite.
Molte sono le metodologie che si usano allo scopo. Tra di esse si cita la ricerca con apparecchi acustici, la ricerca con il metodo della correlazione, la verifica tronco per tronco o zona per zona mediante inserimento di misuratori con o senza chiusura temporanea di tutte le utenze. Tutte queste metodologie, ben note ai gestori degli acquedotti, portano a risultati concreti però sono molto costose e creano notevoli disagi per l’utenza.
Se le micro-perdite presentano, a causa della loro larga diffusione e della difficoltà del loro reperimento, l’inconveniente di un grave e continuo danno economico nell’esercizio della rete, le grosse perdite quali quelle che si verificano in occasione di rotture delle condotte principali hanno un aspetto ancora più preoccupante in quanto le grandi quantità di acqua che fuoriescono dalle condotte possono provocare, oltre a improvvisa mancanza di rifornimento idropotabile, danni anche gravissimi alle sedi stradali, alla circolazione o agli edifici che fiancheggiano le strade. E’ pertanto della massima importanza la loro tempestiva segnalazione ed il pronto intervento per la chiusura del tronco di condotta interessato, salvo provvedere successivamente alla definitiva riparazione. Normalmente la presenza di una perdita del genere viene avvertita dal personale di servizio dall’esame della pressione di immissione in rete che subisce un improvviso calo. Quando la portata della perdita è di entità trascurabile se paragonata alla portata totale immessa in rete oppure quando la rottura non avviene repentinamente ma con una certa progressione o se la zona interessata dalla perdita è alimentata da centrali non custodite, o ancora se gli impianti sono dotati di automatismi di regolazione della pressione in uscita dalla centrale può accadere che tra il verificarsi dell’inconveniente e l’intervento del personale intercorra troppo tempo.
La tempestiva segnalazione delle perdite con emissione in automatico dell’allarme riveste quindi una grande importanza e può ottenersi adottando un insieme di procedure- basate sul raffronto tra dati di funzionamento reali ricavati dagli strumenti di misura installati nelle centrali e nella rete e quelli teorici ricavati dalla verifica del funzionamento idraulico eseguita in automatico e con continuità a mezzo delle apparecchiature di telecomando e telecontrollo delle reti basata sull’uso di potenti computer e di sofisticati programmi applicativi.

Un metodo approassimativo di verifica del funzionamento rete è leggibile cliccando qui
Di grande importanza ed attualità è anche la localizzazione delle perdite resa possibile tramite i programmi di verifica cui si è fatto cenno.

 

4) LA DISTRIBUZIONE TEMPORALE DELLE PORTATE L’analisi della probabile distribuzione nel tempo delle portate richieste dalle reti presenta degli aspetti caratteristici importanti per il funzionamento della rete.

Se si esamina, ad esempio, l’andamento medio dei consumi durante le 24 ore di una giornata dell’acquedotto di una cittadina di medie dimensioni i cui consumi non siano influenzati dalle variazioni di pressione cui si è fatto cenno (vedi seguente fig.8), si nota come si abbiano portate minime dalle ore 1 alle ore 5 circa. Alle 5 ha inizio un rapido aumento che si esaurisce circa alle ore 8 con la punta massima pari a circa 1,5-1,6 volte la media. Le portate subiscono quindi una modesta diminuzione per stabilizzarsi su una portata pari a circa 1,2 volte la media per una durata di circa 7 ore (dalle 11 alle 18). Dalle 18 alle 20 ha luogo un modesto aumento di portata dopodiché ha inizio la fase di diminuzione che si esaurisce, con le portate minime, alle ore 1 del giorno dopo.
Un’altra fondamentale caratteristica del grafico giornaliero dei consumi è data dal valore minimo di consumo notturno intendendo con tale termine il picco minimo, anche se di breve durata, di acqua immessa in rete dalle centrali, valore che si è soliti fissare in una percentuale della portata media giornaliera (ad esempio 30%). Si fa notare invece come esso si mantenga invariato per tutte le giornate dell’anno tipo non essendo influenzato dalle richieste della rete che, nel periodo stesso, sono pressoché nulle.
E’ interessante anche l’andamento del grafico annuo di durata delle portate medie giornaliere ottenuto ordinando i volumi giornalieri in senso decrescente (v. fig. 9). Si nota un punto di flesso che indica come le giornate di maggior consumo (portata media superiore a 1.17 rispetto alla media annua) siano pari a soli 35 giorni all’anno corrispondenti al 10% dell’anno.
Il fenomeno si accentua maggiormente ove si esamini il grafico di durata delle portate orarie durante un anno (vedi fig.9)), caratterizzato anch’esso da un accentuato punto di flesso e dal quale si può rilevare come le ore di maggior consumo (portata media superiore a 1.51 rispetto la media annua) si riduca a sole 450 ore pari al solo 5% dell’anno.
Se ne deduce immediatamente che il dimensionamento delle opere acquedottistiche basato, come di norma, sui consumi critici (ora di punta) comporta un funzionamento che si svolge in modo razionale soltanto per periodi brevissimi mentre nella stragrande maggioranza delle giornate dell’anno esso sarà caratterizzato da pressione sovrabbondante con duplice effetto negativo: inutile dispendio energetico di sollevamento ed eccessiva pressione in rete cui corrisponde una maggiorazione delle perdite di rete come indicato al precedente cap.3.
Sarà invece consigliabile prevedere reti studiate per un esercizio ottimale ai regimi di portata media e medio bassa caratterizzati da un grande frequenza. Ai consumi elevati, molto rari durante l’anno, si dovrà far fronte mediante particolari accorgimenti anche se a consumo energetico elevato. Ne risulterà comunque un bilancio economico vantaggioso essendo al tempo stesso assicurato all’utenza un servizio regolare. Un esempio di rete concepita secondo i principi descritti è riportato, con determinazione dei vantaggi conseguibili, nel n. 3/1998 de “L’ACQUA” con la nota ” La razionalizzazione delle reti di distribuzione di acqua potabile a sollevamento meccanico”

 

 

 

 

5) LA COMPENSAZIONE GIORNALIERA DELLE PORTATE

Le funzioni esplicate dai serbatoi, di grande importanza per l’ottimizzazione dell’esercizio di ogni complesso acquedottistico, sono principalmente due: quella di mantenere una quantitativo d’acqua pronta ad essere immessa in rete in caso di guasti negli impianti di produzione o di richieste anomale dell’utenza, e quella di coprire il divario fra produzione, di solito a portata pressoché costante per l’intera giornata, e le richieste dell’utenza caratterizzate da forti consumi diurni e consumi quasi nulli durante la notte.
In sunto si può dire che le due funzioni sono la riserva di sicurezza e la compensazione giornaliera delle portate. I volumi mediamente necessari a tale scopo sono corrispondenti rispettivamente al 100% ed al 15% del fabbisogno del giorno di massimo consumo anche se, di regola, ci si limita a volumi ben inferiori.
I serbatoi possono essere di due diversi tipi:
· quelli annessi alla produzione, di solito del tipo a terra e caratterizzati da grandi volumi d’invaso, svolgono principalmente il ruolo di accumulo o riserva;
· quelli di rete, generalmente adibiti alla compensazione giornaliera delle portate, sono di dimensioni più contenute e normalmente del tipo in quota (pensili o sopraelevati) cioè con l’invaso altimetricamente ubicato in corrispondenza della piezometrica di rete in modo da rendere possibile l’interscambio diretto di portate con quest’ultima e cioè senza interposizione di apparecchiature idrauliche di sorta (pompe, valvole di regolazione ecc, ecc,).

Grafico giornaiero dei livelli imposti minuto per minuto

Nella memoria “La razionalizzazione delle reti di distribuzione d’acqua potabile a sollevamento meccanico” precedentemente citata, si è dimostrato come non sempre il funzionamento dei serbatoi sia corretto e che, in tali casi, la funzione di compensazione delle portate venga in tutto o in parte a mancare.
Un altro problema, spesso risolto in maniera inadeguata, è quello della regolazione della alimentazione a distanza dei serbatoi sia che abbia luogo tramite condotte di adduzione sia con prelievo da condotte della rete di distribuzione.
La forma più semplice e diffusa consiste nella presenza, nel serbatoio di arrivo, di galleggianti dei quali quello a quota superiore comanda la chiusura dell’adduzione per raggiunto invaso massimo e mentre gli altri, opportunamente posizionati a quote inferiori, provvedono a comandare l’immissione, l’aumento o la diminuzione della portata immessa.
In pratica, con il dispositivo descritto, il serbatoio tende a rimanere sempre pieno e solo nei giorni di massimo consumo, quando la portata della produzione è inferiore alle richieste di punta, ha luogo il suo intervento e la conseguente utilizzazione del volume invasato in precedenza. In tutti gli altri giorni, e specialmente in quelli di basso consumo, la punta viene coperta, in tutto o in parte, dall’impianto di produzione: viene in tal modo a mancare il ruolo di tale impianto che dovrebbe essere quello di immettere in rete le sole portate medie giornaliere. Si deve citare un altro grave difetto che interessa molti acquedotti nei quali i serbatoi di cui si parla si vuotano troppo presto e quando arriva il momento di punta essi sono già vuoti e quindi non possono più contribuire alla copertura delle portate massime richieste dall’utenza.

La soluzione del problema può essere trovata asservendo l’adduzione ad un prefissato grafico giornaliero dei livelli che il serbatoio deve assumere durante la giornata tipo . Salvo una migliore determinazione da effettuarsi in sede di reale esercizio il grafico potrà, ad esempio ( vedi edsempio nel grafico giornaliero dei livelli  imposti ), prevedere il riempimento totale alle ore 6 del mattino quando hanno inizio i consumi dell’utenza, alle ore 9, quando i consumi sono elevati, si potrà prevedere uno svuotamento del 50%, alle 16 del 70% e alle 20 del 80%. Alle ore 01 del giorno dopo avrà inizio il riempimento con un gradiente regolare fino alle ore 6. Il dispositivo automatico effettuerà ad intervalli regolari dei test di controllo e, se i livelli reali risulteranno inferiori a quelli fissati come sopra, comanderà un aumento nell’adduzione in serbatoio. Al contrario nessuna adduzione avrà luogo quando i livelli risulteranno superiori . Una regolazione come quella indicata presenta il vantaggio di consentire lo sfruttamento giornaliero dell’intero volume accumulato durante la notte secondo quelle modalità che il gestore potrà imporre a suo piacimento mediante modifica del grafico preimpostato. Nel mentre nei giorni di consumo massimo sarà possibile effettuare la totale compensazione, negli altri giorni si potrà sfruttare la totale, e in tali casi esuberante, capacità del serbatoio per altri fini, come ad esempio quello di utilizzare cascami di energia elettrica meno costosi diminuendo la produzione giornaliera a favore di quella notturna. Sarà anche possibile mantenere costantemente la produzione sul valore medio giornaliero essendo a forziori garantito che il serbatoio effettua la compensazione in tutte le giornate anche in quelle di bassi consumi.

 

 

6) DETERMINAZIONE DELLE EROGAZIONI ISTANTANEE AI NODI

La razionale gestione di un complesso acquedottistico, soprattutto se a sollevamento meccanico come sono quelli trattati nel presente lavoro, non può, a giudizio di chi scrive queste note, prescindere dalla verifica automatica e continuativa del suo funzionamento idraulico attuata confrontando i dati reali di funzionamento con quelli teorici determinati in tempo reale mediante modello matematico della rete. Oltre ad avere la vera conoscenza della rete, indispensabile per ogni valutazione economica e tecnica di esercizio o di intervento progettuale, in tale ipotesi sarebbero immediatamente segnalate tutte le anomalie di funzionamento come ad esempio rottura di condotte, manovre errate, mancato funzionamento di apparecchiature idrauliche od elettriche, prelievi abusivi ecc. ecc. per avviare gli immediati interventi di riparazione. Alla data attuale, mentre risultano già risolti i problemi relativi alla trattazione matematica di calcolo in moto permanente delle reti magliate anche complesse (serbatoi e apparecchiature idrauliche comprese) e quelli relativi alla sua rappresentazione fisica così come sono risolvibili mediante installazione di adeguate apparecchiature di misura quelli relativi alla determinazione delle condizioni effettive di funzionamento delle apparecchiature idrauliche (pompe, valvole di regolazione ecc.) e dei serbatoi, permangono grandi incertezze su due fattori condizionanti i risultati: la scabrezza reale delle tubazioni, che sono oltretutto variabili durante la vita della rete, ma soprattutto le portate erogate ai nodi argomento questo che forma l’oggetto specifico del presente capitolo.
Gli Enti di gestione sono da tempo dotati di sofisticati programmi per la gestione amministrativa dell’acquedotto con elaboratore elettronico. Viene creata ed aggiornata con continuità una banca dati relativa all’esercizio in genere e cioè ai lavori di costruzione e di manutenzione del complesso acquedottistico, alle domande di allacciamento, ai preventivi spesa e consuntivi dei lavori, alla tenuta dell’anagrafe degli utenti e dei contatori, alle operazioni varie degli utenti (chiusure, riaperture, reclami, manutenzioni, cambio contatori, cambio nome, rimborsi vari, ritardi nei pagamenti ecc, ecc.) e alle letture dei contatori privati e fatturazione dell’acqua consumata.
Si tratta di una grande mole di dati generalmente utilizzati a soli fini amministrativi, dai quali sarebbe possibile ricavare anche le portate d’acqua consegnate agli utenti periodo per periodo e da utilizzare ai fini citati nella premessa di questo capitolo.
Per raggiungere lo scopo sarà innanzitutto necessario redarre lo schema idraulico cioè la rappresentazione planimetrica semplificata della rete nella quale, oltre alle caratteristiche qualitative, geometriche e topografiche delle condotte, siano individuati e numerati i punti singolari (nodi) della rete (incroci di condotte, cambiamento di sezione, punti di allacciamento di utenti particolari ecc.), in cui si suppone concentrato il prelievo da parte degli utenti. All’atto dell’archiviazione dei consumi bimestrali o semestrali di ciascun utente ricavato dalle letture dei contatori, dovranno prevedersi anche i riferimenti a detto schema idraulico.
I programmi applicativi di gestione dovrebbero quindi essere modificati in modo da renderli atti svolgere anche le seguenti funzioni;
· attribuire ad ogni nodo un numero progressivo che lo individui univocamente sia sulla planimetria in scala sia sullo schema idraulico;
· redarre, al computer e parallelamente lo schema grafico deformato della rete che tenga conto di tutte le condotte di rete;
· annessa allo schema idraulico compilare una banca dati con tutte le caratteristiche dei vari tronchi (numero di inizio e fine del tronco, lunghezza, diametro e tipo di materiale costituente la condotta);
· assegnare, mediante opportuni codici memorizzati nella banca dati dello schema idraulico, tutti gli utenti ai rispettivi nodi di appartenenza creando, per gli utenti più importanti, dei nodi fittizi. Questa operazione consentirà di determinare, in occasione di ogni bollettazione, i volumi d’acqua consumati da ciascun nodo nel periodo considerato.

Per quanto riguarda la compilazione dello schema idraulico che sarà poi utilizzato per le verifiche, si devono fare alcune considerazioni.
Per i calcoli si usa utilizzare uno schema semplificato comprensivo delle sole condotte principali in quanto si è sempre ritenuto che quelle secondarie non influiscano sui risultati ma che la loro funzione idraulica si esaurisca in ambito locale. Si è invece constatato che l’eliminazione di quest’ultime condotte provoca un duplice errore. Innanzitutto, pur essendo di piccolo diametro, esse costituiscono una grandissima estesa di tubazioni funzionanti in parallelo alle maglie principali che, se trascurata, comporta un ovvio errore sui risultati finali del calcolo. Il secondo problema, che interessa particolarmente il presente lavoro, consiste nella impossibilità di attribuire razionalmente ai nodi le portate degli utenti che sono allacciati alle condotte da eliminare.
Ora, considerato che i calcoli idraulici sono comunque eseguiti con grande rapidità dagli elaboratori e che le moderne procedure di verifica delle reti magliate sono atte a garantire in ogni caso la convergenza delle iterazioni, è senz’altro preferibile includere nello schema tutte le condotte, nessuna esclusa, rendendo in tal modo più complesso e laborioso lo schema ma più semplice la sua redazione e più attendibile il risultato. Da notare come, nel caso di reti magliate molto complesse, alcuni programmi di calcolo consentono di dividerle in molte sottoreti minori collegate tra di loro da una od anche da numerose condotte. Il programma, ad ogni seduta di calcolo, provvede dapprima ad equilibrare ogni singola sottorete e quindi al collegamento ed equilibratura dell’insieme rendendo in tal modo più veloce e più sicuro risultato. Questa procedura, la cui adozione è in ogni caso consigliabile, oltre a semplificare le operazioni di calcolo eseguite dal computer, fornisce risultati, completi di riepiloghi generali, suddivisi zona per zona, e quindi ne facilita l’utilizzazione anche nel caso di verifica dei consumi zona per zona come si spiegherà più avanti.
Per la determinazione dei consumi ai nodi in oggetto, una metodologia da seguire può essere quella di dividere ogni tronco di condotta in due parti di uguale lunghezza e di attribuire a ciascuno dei due nodi di estremità gli utenti allacciati alla semicondotta adiacente. La semplificazione così attuata rispetto ad altre (ad esempio quella di considerare i consumi uniformemente distribuiti lungo il tronco) fornisce risultati finali sufficientemente esatti.
Sarà possibile, determinare i volumi d’acqua consumati dagli utenti nell’intero periodo di lettura ed attribuibili a ciascun nodo, e da questi ricavare le portate istantanee consumate in ogni nodo utilizzando gli elementi noti e cioè, trattandosi di verifica del funzionamento di un dato istante, la portata totale che le centrali immettono in rete nell’istante medesimo e il cui valore deve corrispondere alla somma dei consumi attribuiti ai nodi.
L’analisi degli elementi definiti con le modalità descritte porta a importanti conclusioni. In pratica si trasformano i dati di lettura dei contatori privati in semplici coefficienti di proporzionalità che applicati ai valori di portata totale della rete (portata immessa in rete dalle centrali), consentono di determinare, con una procedura che qui definiremo sbrigativa, la portata effettiva istantanea di ciascun nodo. E’ evidente che vengono attribuiti ai nodi tutti i consumi anche quelli non dovuti all’utenza quali sono ad esempio le perdite occulte della rete che, in questa sede, sono supposte distribuite in tutto il territorio proporzionalmente ai consumi degli utenti. I valori istantanei da utilizzare nei calcoli sono pertanto tacciati da un duplice errore: quello inevitabile dovuto alle letture che essendo trimestrali od addirittura semestrali possono contenere degli scostamenti con le particolari condizioni di consumo dell’istante considerato e quello, anch’esso sistematico, dovuto al fatto che le eventuali perdite di rete sono assimilate e conglobate nei consumi dell’utenza. In caso di reti vetuste nelle quali la percentuale di perdita è rilevante e quindi rilevante la sua incidenza sui risultati finali, si può ovviare, almeno in parte, adottando una migliore procedura che consiste nel determinare l’ammontare in l/s (continui e costanti per ogni ciclo di 24 ore) delle perdite, ammontare che corrisponde alla portata minima notturna immessa in rete dalle centrali. Per controllo la portata così determinata per tutte le giornate del trimestre e considerata, in prima approssimazione per quanto spiegato al precedente cap. 3, costante per tutte le 24 ore, determina un volume totale trimestrale di perdita che deve coincidere con quello ricavato dalla differenza tra volumi immessi in rete e volumi contabilizzati in base alle letture dei contatori privati.
Le portate totali istantanee attribuibili ai nodi (portate esterne) sono date dalla somma di due valori: la portata dovuta alle perdite (costante per 24 ore) determinata come sopra e quella dovuta ai consumi veri e propri pari al residuo immesso in rete dalle centrali negli istanti considerati. A sua volta i due quantitativi vanno suddivisi tra tutti i nodi seguendo due diverse modalità: la portata dovuta alle perdite, supposta uniformemente distribuita in tutta la rete, può essere attribuita ai nodi in proporzione alla superficie interna delle condotte di competenza di ciascun nodo, l’altra in proporzione dei coefficienti di consumo trimestrale determinati, come indicato, sulla base dei consumi letti ai contatori.
Un esercizio razionalmente organizzato consente di adottare, nei calcoli in argomento, anche modalità più rigorose. Invece di considerare costante per tutta la giornata la portata di perdita, essendo ben note sia le portate di perdita effettiva notturna sia le pressioni reali in tutta la rete, è possibile calcolare in continuo, seguendo le modalità indicate al cap. 3, i volumi totali d’acqua che la rete dissipa nel terreno ed utilizzare tali valori per la ripartizione tra tutti i nodi. Nella distribuzione della perdita tra tutti i nodi si potrebbe infine applicare zona per zona un coefficiente correttivo che tenesse conto della incidenza della pressione media di consegna.
Come già detto con le metodologie descritte, ivi compresa anche quella più sofisticata, si determinano soltanto i coefficienti medi di proporzionalità da utilizzare per distribuire tra tutti i nodi la portata effettiva immessa in rete dalle centrali nell’istante considerato e depurata delle perdite. Anche tale operazione può essere fonte di errori in quanto i coefficienti di proporzionalità vengono applicati all’utenza considerata come omogenea mentre, in realtà, potrebbe non esserlo.
Si ricorda infine che la portata prelevata dagli utenti, come già spiegato  è funzione anche della pressione di consegna la cui variazione nel tempo e da zona a zona introduce un ulteriore fattore di imprecisione nelle determinazioni di cui si discute.
Per eliminare o ridurre gli errori inevitabilmente presenti è necessario suddividere la rete in più sottozone inserendo dei misuratori nelle condotte di collegamento in modo da conoscere per ciascuna di esse, la portata in entrata ed in uscita, quella minima notturna che rappresenta le perdite ed infine gli utenti alimentati e poter quindi operare la suddivisione zona per zona.
Quando ciò risulti materialmente impossibile (ad esempio per la eccessiva presenza di condotte che collegano tra di loro le varie sottozone) si inseriranno dei misuratori solo nei tronchi principali di connessione il che consentirà, in sede di taratura del modello matematico della rete, di effettuare, oltre ai controlli generali di congruenza, anche il confronto tra le portate istantanee calcolate e quelle effettive che transitano in detti tronchi e, in caso di differenze non trascurabili, esaminarne le caratteristiche ed applicare dei coefficienti correttivi zona per zona.
Ciò è reso possibile dal fatto che, essendo noti i sensi di percorrenza dell’acqua in tutte le condotte, sono definite le linee di “displuvio” che delimitano la zona di pertinenza di ciascun punto di misura e quindi i nodi da correggere zona per zona.

Ulteriori e preziose indicazioni non possono che provenire dalla sperimentazione diretta e continuativa effettuata durante il normale esercizio e che risulterà tanto più efficace quanto più numerose saranno le apparecchiature di misura installate a macchia d’olio in tutto il territorio servito come ad esempio venturimetri e manometri di rete di cui non si finirà mai di sottolineare l’importanza. Ad esempio qualora il sistema di verifica automatica segnalasse in alcune zone e durante il periodo notturno di bassi consumi una pressione reale sensibilmente inferiore a quella calcolata ciò starebbe ad indicare che le piccole perdite invece di essere uniformemente distribuite nell’area servita come supposto a priori e come è auspicabile, sono, al contrario, maggiormente concentrate in dette zone. In tale evenienza due sarebbero le strade da seguire: modificare le portate di perdita attribuita ai nodi oppure intensificare la ricerca ed eliminazione delle perdite nelle zone critiche. Ambedue le procedure conducono ad un miglioramento dei risultati dei calcoli di verifica. Non si può far a meno di sottolineare l’importanza della seconda procedura con la quale si raggiunge un importante risultato: quello di orientare in continuazione la ricerca ed eliminazione delle perdite diffuse verso quelle zone dove queste sono maggiormente presenti.
Dalle esperienze fatte nella verifica del funzionamento idraulico di reti reali nelle quali si sono potuti confrontare i risultati teorici con i dati effettivi, si è constatato che gli elementi definiti secondo la procedura sbrigativa sopra descritta sono sufficientemente precisi. Le portate finali che si ottengono, essendo basate sul consumo medio trimestrale, rappresentano il fabbisogno istantaneo più probabile di ogni singolo nodo depurato dalle eventuali e precarie anomalie e tenuto conto di tutte le circostanze reali di alimentazione dell’utenza tra cui anche la pressione media effettiva di consegna dell’acqua zona per zona che, come ben noto, influenza i consumi specifici.
D’altro canto lo scopo del calcolo di verifica, da effettuare durante il normale esercizio, non è quello di rappresentare matematicamente e pedissequamente il comportamento reale della rete nei vari istanti bensì quello di evidenziare gli scostamenti tra dati di funzionamento ideale negli istanti medesimi e la reale situazione. Le portate da introdurre nel calcolo sono pertanto quelle mediamente auspicabili e non quelle effettive condizionate dalle anomalie del momento.
In definitiva le verifiche condurranno ai seguenti risultati:
–  in regime di normale funzionamento le portate determinate secondo le modalità descritte si avvicinano a quelle reali e pertanto i valori risultanti dai calcoli corrispondono a quelli reali;
–  al verificarsi di una anomalia (rottura di condotta, grande prelievo abusivo d’acqua, apertura di uno scarico, sfioro di un serbatoio ecc. ecc.) la conseguente maggior portata in uscita, prontamente registrata dai misuratori delle centrali di sollevamento, invece di venir attribuita al nodo competente va a distribuirsi, essendo applicate le regole sopra enunciate, tra tutti i nodi. Ne consegue una portata al nodo dove si è verificata la perdita nettamente inferiore a quella reale e quindi una pressione di calcolo notevolmente superiore di quella effettiva, mentre per i rimanenti nodi, cui vengono attribuite portate approssimate per eccesso, i risultati del calcolo di verifica denunciano pressioni inferiori rispetto a quelle reali. In altri termini i calcoli, al verificarsi dell’anomalia, denunciano pressioni di tutta tranquillità per tutti i nodi della rete eccettuati quelli interessati dalla nuova perdita per i quali viene invece segnalata una depressione addirittura superiore a quella effettiva. Sono in tal modo enfatizzati gli effetti provocati in rete dalla perdita e consistenti in un cono rovescio di depressione con vertice in corrispondenza della perdita medesima che pertanto diventa facilmente ubicabile.

 

7) CONCLUSIONI

 

Alcuni dei problemi che assillano l’esercizio degli acquedotti, come ad esempio la presenza di rilevanti perdite di rete, sono stati descritti nei loro aspetti pratici con motivazioni ed alcune verifiche teoriche. Ciò ha consentito di formulare proste per il miglioramento funzionale ed economico dell’esercizio dei complessi acquedottistici con particolare riguardo per quelli a sollevamento meccanico.
Sempre in tema di portata si sono esaminate nel punto 6) le modalità da seguire per determinare con buona approssimazione le erogazioni effettive ai nodi della rete in servizio normale. E’ questo un compito arduo ma essenziale per la messa a punto delle procedure di verifica idraulica continuativa ed automatica basate sul calcolo della rete magliata in moto permanente effettuato in tempo reale e che costituiscono un vero salto di qualità nella gestione automatizzata della rete. L’avvio di tali procedure, più volte annunciato da importanti Enti di Gestione, non risulta, a chi scrive queste note, ancora attuato con successo per le molte difficoltà che, in sede di applicazione pratica, sorgono proprio per le determinazioni in argomento. In tal senso, lungi dal poter considerare chiuso l’argomento, si confida di aver fornito, con il presente lavoro, degli spunti per intravederne la soluzione.

I

AVANTI

IL SERBATOIO SOTTERRANEO DI COMO

GRANDE SERBATOIO SOTTERRANEO PER IL RIFORNIMENTO IDRICO DELLL’ISOLA D’ELBA – UN VALIDO ESEMPIO REALIZZATO A COMO

 

Serbatoio di Como

Da alcuni anni il sottoscritto è impegnato a promuovere la costruzione di un grande serbatoio sotterraneo allo scopo di portare a soluzione l’annoso problema del rifornimento idropotabile dell’Isola d’Elba attualmente soggetto a possibili crisi sopratutto estive dovute alla dipendenza dalle fonti della Val di Cornia poste nel continente e al pericolo di rottura della condotta sottomarina di collegamento con la terraferma . Come risulta dal progetto di massima visibile in internet in questo stesso sito , l’opera proposta consiste in una galleria interamente scavata nella roccia e nella quale immagazzinare e conservare le acque, particolarmente abbondanti fuori stagione, allo scopo di poterne disporre nel periodo estivo normalmente caratterizzato da limitata piovosità e quindi da impoverimento delle fonti degli acquedotti. Si tratta di una soluzione semplice e di sicura efficacia ma che , nonostante i pareri nettamente positivi espressi da eminenti studiosi e da tecnici esperti nei servizi idrici, non trova quell’accoglienza che essa meriterebbe.
Allo scopo si ritiene interessante esaminare quali risultati siano stati recentemente ottenuti dalla esecuzione e gestione di un’opera del tutto simile a quella in argomento e cioè la costruzione dell’impianto di trattamento dell’acqua del lago di Como onde poterla utilizzare a scopi potabili. In tale città si è infatti pensato che, anziché occupare in superficie aree pregiate del territorio urbano, fosse preferibile scavare la roccia ed ubicare la mastodontica opera interamente nel sottosuolo ottenendo, come risulta da uno stralcio di una relazione redatta dall’Ente gestore che si allega, notevoli ulteriori benefici.
Da rilevare come la situazione dell’Elba, vuoi per le determinanti caratteristiche di insularità vuoi per la sua vocazione essenzialmente turistica, sia ancora più indicata di Como al trasferimento nel sottosuolo della opere ingombranti che, se realizzate in superficie, creerebbero notevoli inconvenienti per il bellissimo e relativamente esiguo territorio elbano. Ed ecco lo stralcio conforme della relazione

La Potabilizzazione in Caverna
delle acque del Lago di Como

ACSM Spa è una società da sempre all’avanguardia nell’applicazione delle migliori tecnologie sugli impianti di
pubblica utilità gestiti. Un esempio, unico al mondo, è l’impianto in caverna di potabilizzazione delle acque del Lago di Como, supervisionato da Movicon.
L’indiscussa star della storia recente di Acsm spa è La caverna nella quale si trova l’impianto di potabilizzazione
del Lago di Como. Quando erano ancora in corso i lavori, alle pendici del Monte Baradello avevano già fatto
tappa centinaia fra tecnici e curiosi. Adesso che l’impianto è pronto e a regime, si fa fatica a soddisfare le richieste di tutti i visitatori. La media è di 200 persone la settimana, con una netta prevalenza di alunni, studenti delle superiori, universitari. Nessun dubbio che sia un’opera di grande suggestione. Una via di mezzo fra l’epica pionieristica e l’avanguardia tecnologica.
Nel nostro Paese non ci sono precedenti. Dilatare un circoscritto rifugio anti-aereo che risaliva ai tempi della guerra sino a potervi ospitare un impianto gigantesco in grado di raddoppiare la precedente capacità di trattamento (si è passati dai 300 ai 600 litri al secondo) è stato davvero un salto in avanti rispetto alla cantieristica e all’urbanistica italiana che, finora, sottoterra, ci aveva infilato quasi esclusivamente strade e parcheggi. Prima servivano gli stivaloni (per il fango) adesso basta un elmetto giallo (un gadget più che una reale esigenza di sicurezza) per penetrare il tunnel in cui è stata ricavata la centrale, un dedalo di condotte che consegna l’acqua pescata nel lago ai vasconi e a tre distinte fasi di trattamento.La caverna ha calamitato anche l’attenzione delle telecamere eccellenti della Rai che al tunnel dell’acqua ha dedicato un servizio nella trasmissione SuperQuark di Piero Angela “Da Platone ai norvegesi Orchi e tenebre”.
Ma la caverna nasce con il mito su cui si fonda gran parte del pensiero occidentale. Quello in cui Platone immagina una realtà fittizia, in cui vediamo le ombre della realtà e non la realtà stessa. L’idea di scavare nella montagna la nuova centrale di potabilizzazione di ACSM nasce sulla spinta di una riflessione urbanistica e tecnologica.
Restituire alla città un pezzo di città e ridurre a zero l’impatto visivo e ambientale di una centrale che è un groviglio di tubi e infrastrutture metalliche. Sono risultate indispensabili le competenze delle aziende che hanno partecipato all’impresa, comprese le due ditte specializzate norvegesi che hanno scavato dalla roccia le gallerie. Nel cantiere si sono cimentate la Selmer, la Degremont Italia, la Nessi & Majocchi, la Rini, la Sintertec, la SguasseroN. Da primato anche i tempi di esecuzione, che hanno richiesto solo due anni per la realizzazione, cosa non da poco in un Paese spesso abituato a cantieri dai tempi indefinibili. La firma sul prestigioso progetto è di Fernando De Simone, considerato uno dei massimi esperti a livello internazionale in operazioni del genere.

I numeri dell’impianto unico nel suo genere
35 mila i metri cubi rimossi per formare il tunnel (il materiale è stato riconvertito in manutenzioni stradali). Fra i 15 e i 20 metri la larghezza variabile dei tunnel. 15 metri l’altezza massima. 16 milioni di metri cubi la capacità di trattamento annua (600 litri al secondo, rispetto ai 300 litri al secondo della stazione di potabilizzazione preecedente). 2 anni i tempi di esecuzione dell’intervento.

La Sicurezza della Caverna
La crisi internazionale determinata dall’attacco delle Due Torri di New York registra un ulteriore aggravamento. Gli impianti di ACSM Spa, come tutti quelli delle società chiamate ad assicurare servizi collettivi o comunque di
pubblico interesse, sono stati definiti, per loro stessa natura, obiettivi sensibili, cioè strategici per un’eventuale offensiva terroristica e dunque presidi da proteggere con misure speciali. I controlli, da sempre rigidissimi, sono stati ulteriormente rafforzati, nel quadro di un piano complessivo messo a punto assieme a prefettura e questura. L’azienda, per accentuare garanzie già assicurate sin dall’insediamento della nuova centrale di potabilizzazione (peraltro resa meno vulnerabile dal fatto stesso di essere interamente collocata in una caverna), ha diluito le visite e ridotto il percorso all’interno dell’impianto. Durante riunioni con i massimi livelli istituzionali cittadini, è stata anche ventilata l’ipotesi di sospendere il programma di Tognocchi, rinviandolo di qualche mese: non certo perché sussistano rischi per i bambini bensì per ridurre a zero il rischio di intrusioni.

L’impianto di potabilizzazione
L’impianto è stato alloggiato in una caverna scavata nella roccia dal volume complessivo di 35.000 m³. Le dimensioni della caverna principale sono: 150x18h 8÷16mt. Dall’impianto di potabilizzazione si alimentano con ripompaggio le reti principali nell’Acquedotto di Como facenti capo ai rispettivi serbatoi terminali:
· COMO CENTRO, Serbatoio Baradello, quota 265
· COMO EST, Serbatoio Refrec, quota 310
· COMO SUD, Serbatoio Doss, quota 325
…omissis…

Inutile indicare ora i vantaggi che potrebbero derivare al servizio idrico dell’Elba qualora venisse costruito il serbatoio sotterraneo, vantaggi del resto visibili nell’articolo citato. E’ invece preferibile raffrontare tra di loro le due opere rispettivamente comasca ed elbana.
Da rilevare innanzitutto le notevoli dimensioni della caverna di Como che raggiungono i 20 metri di larghezza ed i 15 m di altezza nel mentre la sezione trasversale del serbatoio elbano è, per tutta la sua lunghezza, rappresentata da una circonferenza di soli 10 metri di diametro. Dal confronto l’opera elbana risulta di gran lunga la più semplice da costruirsi specialmente per la possibilità di impiego delle enormi macchine operatrici automatiche di uso normale nello scavo ed il rivestimento interno delle gallerie circolari che invece non si sono potute impiegare a Como. L’opera è inoltre la meno impattante nei riguardi del massiccio roccioso nel quale essa và inserita, tenuto anche presente che il suo tracciato non è fisso come quello della caverna comasca ma può svolgersi in qualunque direzione a seconda delle caratteristiche del territorio da attraversare essendo totalmente priva di vincoli planimetrici.
Un ulteriore elemento che gioca a favore dell’Elba è dato dal materiale di risulta dello scavo della galleria che, così come accaduto a Como, anche nell’Isola troverà un utile impiego ma sarà qui favorito dal fatto che si tratta di ottimo granito. Rendere disponibili in un’isola sabbie, ghiaie e blocchi di granito in gran quantità e a costi prossimi allo zero, rappresenta un importante beneficio secondario di cui occorre tener presente nella determinazione dei costi da preventivare per la realizzazione del serbatoio-galleria.
In conclusione dall’esperienza della città di Como che, nonostante le maggiori difficoltà costruttive, è riuscita a ricavare grandi vantaggi dall’aver trasferito nel sottosuolo roccioso una imponente opera che fino ad allora si trovava in superficie, si possono dedurre ulteriori conferme per la costruzione del serbatoio sotterraneo dell’Isola d’Elba, conferme questa volta desunte da elementi reali come sono la costruzione e la gestione di un manufatto del tutto simile a quello proposto per l’Isola d’Elba.
Un ulteriore importante risultato cui potrebbero portare queste poche righe sarebbe quello di indurre i responsabili del servizio idrico elbano ad effettuare, così come stanno facendo molte altre personalità, una visita all’impianto del lago di Como in modo da rendersi conto “de visu” dei vantaggi ed anche dell’assenza di problemi di un certo rilievo sia in fase di costruzione e sia durante il suo esercizio.